bci Betriebs-AG

Assainissement définitif de la décharge industrielle de Bonfol

LOT A: Construction de l'infrastructure

Rapport technique Traitement des effluents gazeux

Etat 20.10.2008

Groupement DI Bonfol c/o Marti Technik AG Lochackerweg 2 CH-3302 Moosseedorf

Table des matières

1	Généralités	5
2	Principes	5
2.	1 QUANTITES D'EFFLUENTS GAZEUX	5
	2 CHARGES DANS LES EFFLUENTS GAZEUX	
	2.2.1 Polluants organiques gazeux	6
	2.2.2 Polluants anorganiques gazeux	
	2.2.3 Poussières et particules	
2. 3	Choix du procédé de traitement des effluents gazeux	
4	Filtration des poussières	
-	•	
	1 CHOIX DU PROCEDE	
4.	2 FILTRES DE CANAL	
	4.2.1 Description de l'installation des filtres de canal	
	3 FILTRE CONTINU (OPTION 1)	
	4.3.1 Description de l'installation à filtre continu	
	4.3.2 Exploitation du filtre continu	15
5	Postcombustion thermique régénérative (PCR)	16
5.	1 DESCRIPTION DU PROCEDE	16
5.	2 DESCRIPTION DE L'INSTALLATION	17
5.	3 FONCTIONNEMENT	19
5.	4 PROTECTION CONTRE LES EXPLOSIONS	20
5.	5 PCDD/F	20
	5.5.1 PCDD/F existants	
	5.5.2 Formation de PCDD/F	
	Ventilateurs	
	1 DESCRIPTION DU PROCEDE	
_	2 DESCRIPTION DE L'INSTALLATION	
	3 DESCRIPTION DU FONCTIONNEMENT	
7	Laveur	23
7.	1 DESCRIPTION DU PROCEDE	23
7.	2 DESCRIPTION DE L'INSTALLATION	23
7.	3 DESCRIPTION DU FONCTIONNEMENT	24
8	Installation de filtration sur charbon actif	25
8.	1 DESCRIPTION DU PROCEDE	25
8.	2 DESCRIPTION DE L'INSTALLATION	25
8.	3 DESCRIPTION DU FONCTIONNEMENT	26

9	Cheminée d'évacuation	27
10	Électrotechnique et technique MCR	28
10	.1ÉLECTROTECHNIQUE	28
10	.2TECHNIQUE DE MESURE, DE COMMANDE ET DE REGULATION	28
10	.3VISUALISATION DU PROCESSUS	28
11	Surveillance des émissions	30
11	.1PARAMETRES DE FONCTIONNEMENT DE L'INSTALLATION	30
11	.2PARAMETRES DE MESURES DISCONTINUES	30
12	Installations	32
12	.1SCHEMA DE L'INSTALLATION	33
12	.2PI AN D'IMPI ANTATION DE L'INSTALLATION	34

Figures

Fig.	1: Representation schematique du traitement des effluents gazeux	10
	2: Exemples de filtres de canal et boîtier de filtres F7	
Fig.	3: Exemples de filtres de canal et boîtier de filtres H13	13
Fig.	4: Vue de l'élément de filtration des poussières du filtre continu	14
Fig.	5: Big-bag de conception spéciale pour le transport des poussières en suspension	15
	6: Exemple d'une installation de filtration sous la forme d'un filtre continu	
Fig.	7: Schéma de principe de la PCR (installation à 3 chambres)	16
Fig.	8: Exemples de constructions d'installations PCR rectangulaire et ronde	17
	9: Matériau régénérateur à structure en nids d'abeilles	
	10: Exemple d'adsorbeur à charbon actif, exécution en forme de container	
	11: Exemple d'adsorbeur à charbon actif (en vert), version ronde	
Fig.	12: Exemple de schéma de processus PCR	29
	13: Schéma	
Fig.	14: Plan d'implantation provisoire de l'installation de traitement des effluents gazeux, vue du dessus (en jaune : option avec filtre continu)	
Fig.	15: Plan d'implantation provisoire de l'installation de traitement des effluents gazeux, vue en coupe (en jaune : option avec filtre continu)	34
Fig.	16: Vues provisoires de l'installation de traitement des effluents gazeux	
Tab	leaux	
	. 1: Récapitulation des zones d'exploitation et des quantités d'effluents gazeux	
	. 2: Récapitulation des intervalles de fluctuation des débits d'air à traiter	
	. 3: Composition moyenne des polluants organiques dans les effluents gazeux (« Bonfol-Mix »	
	. 4: Analyse élémentaire de la charge moyenne des effluents gazeux ("Bonfol-Mix")	
	. 5: Valeurs limites légales selon OPair Annexe 1 ou 2	
	. 7: Caractéristiques du laveur	
	. 8: Caractéristiques du laveul	
	. 8. Caracteristiques provisores de radsorbeur, version fonde. Cotes D, fret B. voir lig. 11	
	. 10: Paramètres de mesure pour la mise en service et le contrôle	
	. 11: Surveillance des émissions selon le « concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007 adapté au traitement oxydatif	
	gazoux » du 12 jan 2007 daapte du tiatement exyadit inninninninninninninninninninninninninn	

Abréviations

API: Automate programmable industriel

bci: bci Betriebs-AG

EMPA: Laboratoire fédéral d'essai des matériaux et de recherche

FID: Détecteur à ionisation de flamme
LIE: Limite inférieure d'explosion
MCR: Mesure-commande-régulation
PRV: Plastique renforcé de fibres de verre
OPair: Ordonnance sur la protection de l'air
PCDD/F: dibenzodioxine/dibenzofurane polychloré

PCR: Postcombustion régénérative

PE: Polyéthylène

(schéma) PID: Piping and instrumentation diagram

PP: Polypropylène

Filtre continu: Filtre nettoyable en continu

1 Généralités

Dans le cadre de l'assainissement de la décharge industrielle de Bonfol (DIB), un traitement des effluents gazeux respectant les exigences de l'ordonnance sur la protection de l'air (OPair) est prévu. Dans la convention signée entre bci, la République et Canton du Jura, la Fondation Edith Maryon et Greenpeace Suisse le 11.01.2008, il a été décidé que le traitement s'effectuerait par oxydation et qu'une installation de traitement par adsorption sur charbon actif devait en outre être mise en place afin d'obtenir une redondance.

Le présent rapport décrit le procédé utilisé pour le traitement des effluents gazeux.

Les installations prévues pour le captage et l'évacuation des effluents gazeux de la halle de préparation, de la halle d'excavation et de la halle des sols ne font pas l'objet du présent rapport. Voir pour cela le « Concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007 respectivement le rapport technique de la halle des sols.

2 Principes

2.1 Quantités d'effluents gazeux

L'air à traiter est aspiré de la halle d'excavation, des différentes zones fonctionnelles et d'exploitation de la halle de préparation et de la halle des sols.

Le concept développé à cette fin qui prévoit une extraction ciblée avec des taux de renouvellement d'air correspondant aux besoins de l'exploitation fait l'objet d'une planification séparée et est décrit dans le « Concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007.

Le tableau ci-dessous donne une vue d'ensemble des zones fonctionnelles et des quantités d'effluents gazeux:

Zone	Quantité d'effluents gazeux
Halle d'excavation / Halle de préparation	max. 90'000 m³/h
Halle des sols	max. 20'000 m³/h

Tab. 1: Récapitulation des zones d'exploitation et des quantités d'effluents gazeux

Les quantités d'effluents gazeux dépendent des taux de renouvellement d'air nécessaires dans les différentes zones d'exploitation qui ont été déterminés par exemple afin d'éviter la formation d'une atmosphère explosive ou aussi afin de permettre d'effectuer les processus d'entrée et de sortie par les sas. Parallèlement, les volumes minimaux d'air sont donnés par un réglage approprié des quantités d'air aspiré de façon à ce qu'une dépression d'au moins 20 Pa soit maintenue en permanence dans les halles.

Le calcul des quantités d'air a été effectué pour les différentes conditions d'exploitation. En résumé, pour le traitement des effluents gazeux les débits indiqués au tableau cidessous peuvent être déduits.

Conditions d'exploitation	Q (m³/h)
Exploitation à l'arrêt (nuit, week-end)	60'000 – 70'000
Exploitation en activité	70'000 – 110'000 ¹

Tab. 2: Récapitulation des intervalles de fluctuation des débits d'air à traiter

_

¹ En règle générale, les débits se situeront entre 70'000 et 80'000 m³/h

2.2 Charges dans les effluents gazeux

2.2.1 Polluants organiques gazeux

Les teneurs en polluants organiques gazeux les plus importants, appelés « Bonfol-Mix » ont été déterminées dans le « Concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007.

Cette qualité des effluents gazeux constitue la base pour le dimensionnement des installations de traitement thermique. En tenant compte des volumes d'air évacué de la halle d'excavation, de la halle de préparation et de la halle des sols, la concentration totale en polluants est en moyenne d'environ 200 mg/m³. Le pouvoir calorifique qui en résulte se trouve donc nettement en dessous de la limite qui permettrait une exploitation autotherme sans carburant auxiliaire supplémentaire.

Les composants organiques les plus importants des effluents gazeux sont indiqués dans le tableau suivant.

Chimique	Nom	formule	MM	Opair	part	
Eenzène	I tom		141141	Opan		
Benzène		ommique				
Benzène C6H6 78.1 K3 26.49% Toluène C7H8 92.1 2 11.09% Méthanol CH4O 32.0 3 5.49% CH4O CASHOO CASHO			[a/mol]	classe		
Toluène C7H8 92.1 2 11.09% Méthanol CH4O 32.0 3 5.49% Tétrahydrofuranne C4H8O 72.1 1 4.88% Acétone C3H6O 58.1 3 2.00% Isopropanol C3H8O 60.1 3 1.90% Sulfure de diméthyle C2H6S 62.1 - 1.89% Ethylbenzène C8H10 106.2 1 1.67% Xylènes (Diméthylbenzènes) C8H10 106.2 2 0.29% Dioxanne (1.4) C4H8O 72.1 3 0.20% Ethanol C2H6O 46.1 3 0.18% Picoline (Méthylpyridine) C2H6O 46.1 3 0.18% Picoline (Méthylpyridine) C8H7N 93.1 - 0.14% Butanol n- C4H10O 74.1 3 0.04% Cylohexane C6H14 86.2 3 0.03% Cylohexane C6H12 84.2 - 0.02% Méthyléthylcétone (MEC) C4H8O 72.1 3 0.02% Méthyléthylcétone C9H12 120.2 2 0.02% Méthyléthone C9H12 120.2 2 0.02% Méthyléthone CH2CI2 84.9 1 14.83% Chloroforme CH2CI2 84.9 1 14.83% Chloroforme CH2CI2 84.9 1 14.83% Chloroforme CH2CI2 84.9 1 12.4 19.4 1 9.68% Chloroforme CH3CI 131.4 1 5.97% Characteria CH3CI 131.4 1 5.97% Characteria Characteria CH3CI 131.4 1 5.97% Characteria Char	Benzène	C6H6				
Méthanol CH4O 32.0 3 5.49% Tétrahydrofuranne C4H8O 72.1 1 4.68% Acétone C3H6O 58.1 3 2.00% Isopropanol C3H8O 60.1 3 1.90% Sulfure de diméthyle C2H6S 62.1 - 1.89% Ethylbenzène C8H10 106.2 1 1.89% Xylènes (Diméthylbenzènes) C8H10 106.2 2 0.29% Dioxanne (1,4) C4H8O2 86.1 1 0.20% Ethanol C2H6O 46.1 3 0.18% Picoline (Méthylpyridine) C8H7N 93.1 - 0.14% Hexane C6H7N 93.1 - 0.04% Cyclohexane C6H12 84.2 - 0.02% Décane C10H2C 24H8O 72.1 3 0.02% Methyléthyléthylétene (MEC) C4H8O 72.1 3 0.02% Gotane C3H8A 11.2.4						
Tétrahydrofuranne			_			
Acétone C3H6O 58.1 3 2.00% Isopropanol C3H8O 60.1 3 1.90% Suffure de diméthyle C2H6S 62.1 - 1.89% Ethylbenzène C8H10 106.2 1 1.67% C8H10 106.2 2 0.29% Dioxanne (1,4)		-				
Sopropanol Sulfure de diméthyle C2H6S 62.1 - 1.89%	,					
Sulfure de diméthyle						
Ethylbenzène C8H10 106.2 1 1.67% C8H10 106.2 2 0.29% C8H10 106.2 2 0.29% C8H10 106.2 2 0.29% C4H8O2 86.1 1 0.20% Ethanol C2H6O 46.1 3 0.18% C2H6O 46.1 3 0.18% C2H6O 46.1 3 0.18% C2H6O 46.1 3 0.18% C2H6O 46.1 3 0.14% C2H6O 46.1 3 0.04% C2H6O 46.1 3 0.04% C2H6O 46.1 3 0.04% C2H6O 46.1 3 0.04% C2H4CI2 99.0 K3 0.03% C2K6O C2H4CI2 99.0 K3 0.02% C2H6O C2H4CI2 99.0 K3 0.29% C2H6O C2H4CI2 99.0 K3 0.29% C2H6O C2H4CI2 99.0 K3 0.23% C2H4CI2 99.0 C2H4CI2 99.0 C2H4CI2 99.0 C3 0.03% C2H4CI						
Xylénes (Diméthylbenzènes) C8H10 106.2 2 0.29% C4H8O2 86.1 1 0.20% C2H6O 46.1 3 0.18% C2H6O C4H10O 74.1 3 0.04% C9H0O C6H7N 93.1 - 0.14% C9H0O C6H12 84.2 - 0.02% C9H0O C4H10O C6H14 86.2 3 0.03% C9H0O C4H10O C4H10	,			1		
Dioxanne (1,4) C4H8O2 (2H8O2 (2H6O) 46.1 (3 0.18% (2H6O) (2H6O) 46.1 (3 0.18% (2H7O) (2H				2		
Ethanol C2H6O 46.1 3 0.18% Picoline (Méthylpyridine) C6H7N 93.1 - 0.14% Butanol n- C4H10O 74.1 3 0.04% Hexane C6H14 86.2 3 0.03% Cyclohexane C6H12 84.2 - 0.02% Décane C10H22 142.3 3 0.02% Méthyléthylcétone (MEC) C4H8O 72.1 3 0.02% Cotane C8H18 114.2 3 0.02% Cotane C8H18 114.2 3 0.02% Aniline C6H7N 93.1 1 0.01% Aniline C6H7N 93.1 1 0.01% Aniline CH2Cl2 84.9 1 1.2-Dichloréthane CH2Cl2 84.9 1 1.3-Dichloréthylène C9H5Cl3 131.4 1 5.97% Chlorobenzène C6H5Cl 112.6 2 9.22% Trichloréthylène (C3H3Cl3 133.4 1 1.4-Sinchloréthylène (C4H8O2		1	0.20%	
Butanol n- Hexane	Ethanol	C2H6O		3		
Butanol n- Hexane			-			
Cyclohexane C6H12 84.2 - 0.02% Décane C10H22 142.3 3 0.02% Méthyléthylcétone (MEC) C4H80 72.1 3 0.02% Octane C8H18 114.2 3 0.02% 1,2,4-Trichloréthylbenzène C9H12 120.2 2 0.02% Heptane C7H16 100.2 3 0.01% Aniline C6H7N 93.1 1 0.01% Dichlorométhane CH2CI2 84.9 1 14.83% Chlorobenzène C6H5CI 119.4 1 9.68% Chlorobenzène C6H5CI 112.6 2 9.22% Trichloréthylène C2HCI3 131.4 1 5.97% 1,1,1-Trichloréthane C2HCI2 96.9 3 1.00% Tétrachloréthylène (PER) C2CI4 165.8 1 0.94% Tétrachloréthane C2H4CI2 99.0 K3 0.23% 0.23% Tetrachloréthène C2H4CI2 </td <td>Butanol n-</td> <td>C4H10O</td> <td>74.1</td> <td>3</td> <td>0.04%</td> <td></td>	Butanol n-	C4H10O	74.1	3	0.04%	
Cyclohexane C6H12 Décane 84.2 C10H22 142.3 3 0.02% Méthyléthylcétone (MEC) C4H80 72.1 3 0.02% 0.02% Octane C8H18 114.2 3 0.02% 1.2.4-Triméthylbenzène C9H12 120.2 2 0.02% 1,2,4-Triméthylbenzène C9H12 120.2 2 0.02% 1.2-Dichloréthène (cis) Heptane C7H16 100.2 3 0.01% 0.01% Aniline C6H7N 93.1 1 0.01% Dichlorométhane CH2Cl2 84.9 1 1.4.83% Chlorobenzène C6H5Cl 112.6 2 9.22% Chlorobenzène C6H5Cl 112.6 2 9.22% Trichloréthylène C2HCl3 131.4 1 5.97% 1,1,1-Trichloréthène (cis) C2H2Cl2 96.9 3 1.00% Tétrachloréthène (PER) C2Cl4 165.8 1 0.94% Tétrachloréthène C2H4Cl2 99.0 K3 0.23% 1,2-Dichloréthane C2H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 2 0.12% 1,2-Dichloréthène C2H2Cl2 96.9 3 0.03%	Hexane	C6H14	86.2	3	0.03%	
Décane C10H22 142.3 3 0.02% Méthyléthylcétone (MEC) C4H8O 72.1 3 0.02% Octane C8H18 114.2 3 0.02% 1,2,4-Triméthylbenzène C9H12 120.2 2 0.02% Heptane C7H16 100.2 3 0.01% Aniline C6H7N 93.1 1 0.01% Aniline CH2Cl2 84.9 1 14.83% Chloroforme CHCI3 119.4 1 9.68% Chloroforme CHCI3 119.4 1 9.68% Chloroforme CHCI3 131.4 1 5.97% Trichloréthylène C2H3Cl3 133.4 1 1.14% 1,2-Dichloréthène (cis) C2H2Cl2 96.9 3 1.00% Tétrachloréthylène (PER) C2Cl4 165.8 1 0.94% Tétrachloréthylène (PER) C2H4Cl2 99.0 K3 0.24% Tétrachloréthène C2H4Cl2 99.0	Cyclohexane	C6H12	84.2	_	0.02%	
Octane C8H18 114.2 3 0.02% 1,2,4-Triméthylbenzène C9H12 120.2 2 0.02% 1,2,4-Triméthylbenzène C9H12 120.2 2 0.02% 1,2-Dichloréthène (cis) C2H2Cl2 84.9 1 1.4.83% Chloroforme CHCl3 119.4 1 9.68% Chlorobenzène C6H5Cl 112.6 2 9.22% Trichloréthylène C2HCl3 131.4 1 5.97% 1,1,1-Trichloréthane C2H3Cl3 133.4 1 1.14% 1,2-Dichloréthène (cis) C2H2Cl2 96.9 3 1.00% Tétrachlorométhane CCI4 153.8 1 0.31% P-Dichlorobenzène C14Cl2 147.0 K3 0.23% 1,1-Dichloréthàne C2H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 C3HCl2 96.9 3 0.03% 1,2,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% 1,2,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% 1,2,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% 1,2,2-Trichlorobenzène C6H3Cl3 181.4 - 0.03%	Décane	C10H22	142.3	3		
1,2,4-Triméthylbenzène	Méthyléthylcétone (MEC)	C4H8O	72.1	3	0.02%	
1,2,4-Triméthylbenzène	Octane	C8H18	114.2	3	0.02%	Tétrachloréthylène
Aniline C6H7N 93.1 1 0.01% Dichlorométhane CH2Cl2 84.9 1 14.83% Chloroforme CHCl3 119.4 1 9.68% Chlorobenzène C6H5Cl 112.6 2 9.22% Trichloréthylène C2HCl3 131.4 1 5.97% Chloroforme C2H3Cl3 133.4 1 1.14% 1,2-Dichloréthène (Cis) C2H2Cl2 96.9 3 1.00% Tétrachlorométhane CCl4 153.8 1 0.31% p-Dichlorobenzène (1,4) C6H4Cl2 147.0 K3 0.24% 1,2-Dichloréthène C2H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 C2H4Cl2 96.9 3 0.03% 1,1-2-Dichloréthène (trans) C2H2Cl4 167.9 1 0.06% 1,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% 1,2-4-Trichlorobenzène C6H3Cl3 181.4 - 0.03%	1,2,4-Triméthylbenzène	C9H12	120.2	2	0.02%	
Aniline	Heptane	C7H16	100.2	3	0.01%	
Dichloromethane	Aniline	C6H7N	93.1	1	0.01%	17.
Chlorobenzène Chlorobenzène Chlorobenzène Chlorobenzène Chlorobenzène Chlorobenzène Chlorobenzène 9% Chloroforme 9% Chloroforme 10% Chloroform	Dichlorométhane	CH2Cl2	84.9	1	14.83%	
Chlorobenzene Ch	Chloroforme	CHCI3	119.4	1	9.68%	Benzène
Trichloréthylène	Chlorobenzène	C6H5CI	112.6	2	9.22%	Chlorobenzene 269/
1,1,1-Trichloréthane 1,2-Dichloréthène (cis) C2H2Cl2 96.9 3 1.00% Tétrachloréthylène (PER) Tétrachlorométhane C2H4 165.8 1 0.94% p-Dichlorobenzène (1,4) C6H4Cl2 147.0 K3 0.24% p-Dichlorobenzène (1,4) C6H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 1,1-Dichloréthène C2H4Cl2 99.0 1,1-Dichloréthène C2H2Cl4 167.9 1 0.06% 1,2-Dichloréthène (trans) 1,2-Di	Trichloréthylène	C2HCl3	131.4	1	5.97%	
Tétrachloréthylène (PÉR) C2Cl4 165.8 1 0.94% Tétrachlorométhane CCl4 153.8 1 0.31% p-Dichlorobenzène (1,4) C6H4Cl2 147.0 K3 0.24% 1,2-Dichloréthane C2H4Cl2 99.0 K3 0.23% 1,1-Dichloréthène C2H4Cl2 99.0 2 0.12% 1,2,2-Tétrachloréthane C2H2Cl4 167.9 1 0.06% 1,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% 1,2,4-Trichlorobenzène C6H3Cl3 181.4 - 0.03%	1,1,1-Trichloréthane	C2H3Cl3	133.4	1	1.14%	
Tétrachlorométhane	1,2-Dichloréthène (cis)	C2H2Cl2	96.9	3	1.00%	
p-Dichlorobenzène (1,4)	Tétrachloréthylène (PER)	C2Cl4	165.8	1	0.94%	
1,2-Dichloréthane C2H4Cl2 99.0 K3 0.23% 15% Méthanol 5% Tétrahydrofuranne 15% Tétrahydrofuranne 27% Tétrahydrofuranne 27% Tétrahydrofuranne 27% Tétrahydrofuranne 27% Tétrahydrofuranne 27% Nacétone 5% Tétrahydrofuranne 27% Sulfure de diméthyle 150% Isopropanol 27% Isopropanol 27% 15% Nacétone 5% 15% Nacétone 5% 15% Isopropanol 27% 15% Nacétone 5% 15% Isopropanol 27% 15%	Tétrachlorométhane	CCI4	153.8	1	0.31%	Toluène
1,2-Dichloréthane	p-Dichlorobenzène (1,4)	C6H4Cl2	147.0	K3	0.24%	
1,1-Dichloréthène C2H4Cl2 99.0 2 0.12% Ethylbenzène / 2% Tétrahydrofuranne Acétone 5% 1,1,2,2-Tétrachloréthane C2H2Cl4 167.9 1 0.06% 2% Isopropanol 2% Isopropanol 2% 1,2,4-Trichlorobenzène C6H3Cl3 181.4 - 0.03% Sulfure de diméthyle 2% 2%	1,2-Dichloréthane	C2H4Cl2	99.0	K3	0.23%	15%
1,1,2,2-Tétrachloréthane C2H2Cl4 167.9 1 0.06% 6 6 2% 1 1 1 0.06% 1 1 1 0.06% 1 1 0.03% 1 1 0.03% 1 0.03% 1 0.03% <td< td=""><td>1,1-Dichloréthène</td><td>C2H4Cl2</td><td>99.0</td><td>2</td><td>0.12%</td><td>Ethylbenzène_/ /Tétrahydrofuranne</td></td<>	1,1-Dichloréthène	C2H4Cl2	99.0	2	0.12%	Ethylbenzène_/ /Tétrahydrofuranne
1,2-Dichloréthène (trans) C2H2Cl2 96.9 3 0.03% Sulfure de diméthyle Isopropanol 2% 1,2,4-Trichlorobenzène C6H3Cl3 181.4 - 0.03%	1,1,2,2-Tétrachloréthane	C2H2Cl4	167.9	1	0.06%	/ _ 2%
1,2,4-Trichlorobenzène C6H3Cl3 181.4 - 0.03% ^{2% 2%}	1,2-Dichloréthène (trans)	C2H2Cl2	96.9	3	0.03%	Sulfure de diméthyle _ Isopropanol
Total 100.00%	1,2,4-Trichlorobenzène	C6H3CI3	181.4	-	0.03%	2% 2%
	Total				100.00%	•

Tab. 3: Composition moyenne des polluants organiques dans les effluents gazeux (« Bonfol-Mix »)

L'analyse élémentaire du « Bonfol-Mix » donne les pourcentages massiques moyens suivants pour les différents éléments chimiques :

Elément		Pourcentage massique
Carbone	С	55.98%
Hydrogène	Н	6.10%
Oxygène	0	4.99%
Azote	N	0.02%
Chlore	Cl	31.93%
Soufre	S	0.98%
Total		100.00%

Tab. 4: Analyse élémentaire de la charge moyenne des effluents gazeux ("Bonfol-Mix")

Le tableau 4 montre qu'il faut compter avec un pourcentage de chlore de 32% en moyenne. Les polluants gazeux acides produits lors de l'oxydation thermique, comme par exemple le HCl, doivent être éliminés de l'air traité par des mesures additionnelles afin de respecter la valeur limite de l'OPair.

2.2.2 Polluants anorganiques gazeux

Dans le Bonfol-Mix, seules de faibles quantités de polluants anorganiques (NH_3 , H_2S) ont été mises en évidence. Dans la halle de préparation des déchets, des post-réactions éventuelles peuvent produire à court terme des composants anorganiques supplémentaires.

Selon notre estimation, il ne faut pas s'attendre à des émissions significatives de substances anorganiques par rapport au débit volumique total des effluents gazeux, ce qui rend inutile un prétraitement.

Les composés contenant du silicium contenus dans des effluents gazeux peuvent s'oxyder en SiO₂ et produire des dépôts anorganiques sur les échangeurs de chaleur en céramique utilisés dans la PCR. Dans ce cas, les corps en structure de nids d'abeille s'obstruent et détériorent les conditions d'exploitation, ce qui nécessite, selon la quantité des dépôts, des temps d'arrêt avec nettoyage en profondeur ou bien le remplacement des matériaux des échangeurs de chaleur.

Selon les connaissances actuelles, ces composés organiques contenant du silicium proviennent de siloxanes dans les effluents gazeux. Cependant, cette famille de substances n'est utilisée que depuis le milieu des années 80 dans l'industrie des matériaux de construction, dans l'industrie des cosmétiques et dans l'industrie chimique.

Pour la décharge de Bonfol, dans laquelle les déchets ont été déposés de 1961 à 1976, la « problématique des siloxanes » ne joue donc qu'un rôle subalterne.

Pour la sélection du procédé, aucune restriction n'est ainsi prévue en ce qui concerne le choix de l'échangeur de chaleur.

2.2.3 Poussières et particules

Du fait des teneurs en eau supposées des déchets, il ne faut pas s'attendre à une formation significative et durable de poussières lors de l'excavation des déchets et de leur chargement. Il faut s'attendre à ce que les sources de poussières potentielles existant dans la décharge (gravats, agents de filtration) soit à tel point mouillées par l'eau stagnant dans la décharge que des émissions de poussières ne se produiront que de manière exceptionnelle.

Par contre, des émissions temporaires de poussières peuvent avoir lieu lors de la préparation des déchets (halle de préparation), du fait de leur transbordement, de leur préparation et de leur criblage, ainsi que lors de la manipulation des sols et des processus de préparation et de transbordement dans la halle des sols. Ces émissions sont cependant principalement dues aux additifs utilisés (sciure et chaux pour les déchets, sable léger pour les sols, etc.). L'estimation exacte des quantités et de la composition des poussières formées le cas échéant n'est possible que de manière limitée. Le type et la quantité des additifs nécessaires étant adaptés de manière spécifique aux besoins de l'exploitation en fonction des déchets existants, une quantité et un type de poussières standard ne peuvent pas être utilisés comme base de planification.

C'est donc essentiellement sur la prise en compte de différents concepts coordonnés et interchangeables ainsi que d'options que repose le choix du procédé de filtration des poussières.

2.3 Bases légales

Pour les émissions de l'installation de traitement des effluents gazeux, les valeurs limites de l'ordonnance sur la protection de l'air (OPair, état 01.01.08) Annexe 1 doivent être respectées en tant que « Limitations préventives et générales des émissions ».

Le tableau suivant montre les valeurs limites à respecter avec les limites de charge et de concentration pour les effluents traités.

Paramètres	Valeurs limites
Teneur totale en poussières	0.2 kg/h ou si plus élevée : 20 mg/m ³
Oxydes d'azote exprimé en NO ₂	2.5 kg/h ou si plus élevée : 250 mg/m ³
Oxydes de soufre sous forme de SO ₂	2.5 kg/h ou si plus élevée : 250 mg/m ³
Composés anorganiques chlorés sous forme de HCl	0.3 kg/h ou si plus élevée : 30 mg/m ³
Carbone total de composition inconnue	0.1 kg/h ou si plus élevée : 20 mg/m ³
(selon Annexe 1 Article 7 Paragraphe 5)	
CO	50 mg/m³
(selon Annexe 2 Article 714)	
PCDD/F	0.1 ng TEQ/m ³
(selon Annexe 2 Article 714)	

Tab. 5: Valeurs limites légales selon OPair Annexe 1 ou 2

3 Choix du procédé de traitement des effluents gazeux

Pour le traitement des effluents gazeux des halles, avec les compositions et les quantités mentionnées aux chapitres 2.1 et 2.2, il est prévu d'utiliser une installation de traitement thermique avec un pré-filtrage à 2 étapes pour la filtration des poussières ainsi qu'une étape de lavage pour l'élimination des polluants gazeux acides.

Dans l'étape de filtration des poussières, en plus de la filtration haute performance des particules dans le domaine des poussières en suspension, les métaux lourds ainsi que les matières organiques de grosse masse moléculaire (par ex. PCDD/F) qui y sont adsorbés sont aussi éliminés et les conditions de combustion ainsi optimisées.

Dans l'étape thermique, conçue sous la forme d'une postcombustion régénérative (PCR), a lieu l'oxydation complète des composants organiques volatils des effluents gazeux à des températures de combustion et avec des temps de séjour garantissant le respect des valeurs limites d'émissions.

Les résidus de combustion acides produits lors de la combustion des composés organiques halogénés sont introduits dans une colonne de lavage et traités de façon à ce que les valeurs limites soient respectées même lors d'une fluctuation des concentrations.

Le concept de traitement des effluents gazeux prévoit, pour des raisons de redondance, une installation à filtre à charbon actif à une étape en tant que réserve en cas de panne, qui permet de traiter la totalité des effluents gazeux de l'installation thermique lors d'une défaillance.

La Fig. 1 suivante montre les différentes étapes du procédé de traitement des effluents gazeux.

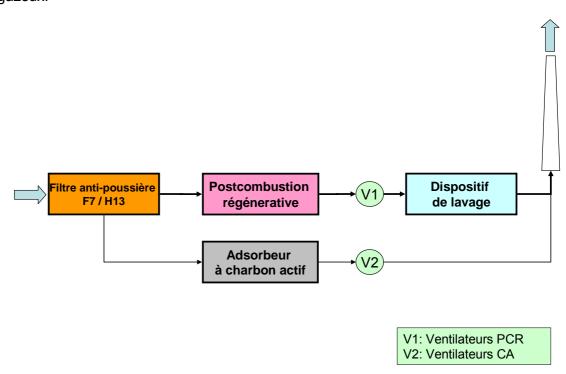


Fig. 1: Représentation schématique du traitement des effluents gazeux

Dans les chapitres suivants les différentes étapes du procédé nécessaires au fonctionnement de l'installation de traitement des effluents gazeux sont expliqués de manière détaillée.

4 Filtration des poussières

4.1 Choix du procédé

Dans le « Concept de ventilation et de gestion des effluents gazeux » du 12.06.2007 une filtration en deux étapes des matières en suspension (particules < 1 μ m) jusqu'à la classe H13 est prévue.

Située avant le traitement thermique, cette installation assure l'élimination des particules ayant une taille de 0,1 à 0,3 µm avec une performance de filtration moyenne de 99,97%.

En particulier, les composés cancérigènes peu volatils selon l'OPair Annexe 1 Point 8ff, qui n'ont pu être émis que sous forme particulaire dans l'air, sont retenus et n'atteignent pas les étapes suivantes de l'installation de traitement des effluents gazeux. La haute qualité de cette pré-filtration des poussières permet de se passer d'étapes supplémentaires de filtration pour la protection des parties suivantes de l'installation.

Option 0

L'option de départ 0 prévoit l'utilisation de filtres de canal F7/H13.

Les filtres de canal de classe H13 (conception à cassettes) ne stockent les poussières que de manière limitée et nécessitent pour leur protection une pré-filtration par exemple avec des filtres fins de classe F7.

Option 1

Dans le cadre des tests lors de la phase pilote, les quantités et qualités de poussières seront mesurées et il pourra être décidé si la première étape de filtration (filtre F7) doit être remplacée par un filtre nettoyable en continu (filtre continu), afin d'optimiser la sécurité et les coûts. Le filtre continu sera conçu de façon à obtenir une durée de vie et une qualité de filtration suffisantes. Ainsi, le filtre à poussières en suspension H13, situé en aval, serait sollicité le moins possible et la fréquence de remplacement des cassettes minimisée.

Pour le projet Bonfol, un filtre (à lamelles frittées) avec des éléments de filtration nettoyés en continu et une élimination des poussières automatique et fermée, sera utilisé de préférence.

Du fait des investissements plus importants et de la consommation énergétique plus élevée pour la ventilation, ces filtres ne sont plus rentables que les filtres à cassettes qu'à partir de concentrations moyennes en poussières de plus de 3 mg/m³ environ.

Lors de la planification de l'implantation, des places de réserve seront prévues pour une extension éventuelle à l'aide d'un filtre continu.

4.2 Filtres de canal

Le pré-filtre F7 de la première étape garantit, selon EN779, un degré de filtration d'une particule de $0.4~\mu m$ de $80\% \le E_m 0.4 < 90\%$.

Les filtres de canal de classe F7 sont fabriqués en toisons et ils fonctionnent comme des filtres de stockage. Selon la forme, le nombre et la profondeur des poches et le type de poussières, des masses de poussières allant de 250 à 700 g peuvent être stockées dans les éléments de filtration. La surveillance permanente de l'augmentation continuelle de la résistance du filtre permet de déterminer le moment de remplacement des éléments (généralement à 250 – 300 Pa).

Le filtre principal de la deuxième étape, de classe H13 selon EN1822, garantit un degré moyen de filtration des MPPS (« most penetrating particle size », 0.15 à 0.2 µm) de 99.95%.

Les filtres principaux prévus dans la deuxième étape stockent les poussières dans des cassettes, mais des indications de quantités fiables ne sont pas possibles, car elles dépendant de facteurs comme le type, la densité, la répartition de la taille des grains ainsi que de l'humidité des poussières, qui ne peuvent pas être déterminés préalablement.

Le remplacement des filtres à cassettes a lieu lorsque des résistances de filtration entre 450 et 500 Pa sont atteintes.

4.2.1 Description de l'installation des filtres de canal

1ère étape de filtration (Option 0)

Dans l'option 0 la première étape de filtration est constituée de filtres à poussières sous la forme de filtres à poches de classe F7 qui permettent une performance allant jusqu'à 4'250 m³/h par élément de filtration. La toile des filtres est constituée de fibres de verre collées dans un cadre en matière plastique. Une quantité d'air allant jusqu'à 1,25 fois la quantité d'air nominale peut être traitée.

Utilisation : filtre d'entrée d'air d'installation de climatisation et de ventilation

Type: filtre à haut rendement Châssis: Matière plastique (polystyrol)

Support : fibre de verre

Classe de filtre selon EN 779:2002 : F6, F7, F9 Différence de pression finale recommandée : 250 Pa Quantité d'air maximale : 1,25 x Quantité d'air nominale Température / Humidité de l'air : 70°C / 100% humidité relative

Fig. 2: Exemples de filtres de canal et boîtier de filtres F7

30 filtres à poches, disposés dans 5 boîtiers de filtres en parallèle en acier, sont prévus.

Dans le cas d'une mise hors service d'une unité pour le remplacement des éléments chargés en poussière, l'installation peut continuer à être utilisée à pleine capacité, car une alimentation des 4 filtres restants est possible jusqu'à 25% au-dessus de la quantité d'air nominale.

2ème étape de filtration (Option 0 et Option 1)

Dans les deux options la deuxième étape de filtration est constituée d'un filtre à poussières HEPA de classe H13.

Le dimensionnement et le débit nominal correspondent à la première étape de filtration. La toile de filtration est constituée de fibres de verre intégrées dans un cadre métallique.

Utilisation : filtre à matières en suspension pour applications standard

Type : filtre HEPA Châssis : contre-plaqué (12 couches) Entretoise (séparateur) : aluminium

Masse de scellement : polyuréthane (colle bicomposant) Support : fibre de verre

Joint d'étanchéité : mousse polyuréthane. D'autres joints d'étanchéité sur demande Degré de séparation : ≥ 99,95% dans la MPPS (taille moyenne de particules) Classe de filtre selon EN 1822 : H13

Différence de pression finale recommandée : 500 Pa
Température / Humidité de l'air : 110°C / 100% humidité relative
Remarques : Autres versions sur demande (par exemple, châssis en acier, séparateurs en matière plastique)

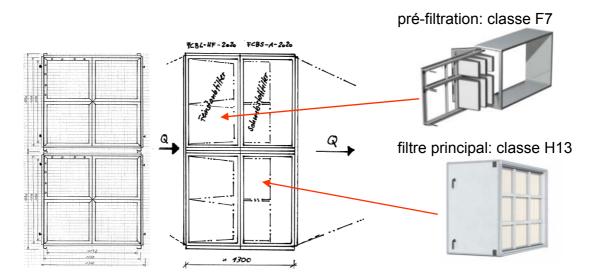


Fig. 3: Exemples de filtres de canal et boîtier de filtres H13

4.2.2 Fonctionnement de l'installation des filtres de canal

Le fonctionnement des filtres de canal est automatique. La maintenance des filtres de canal consiste essentiellement en un remplacement des cassettes de filtration saturées. Le moment du remplacement dépend de la concentration en poussières dans l'air à traiter, de la différence de pression maximale choisie et de l'alimentation du filtre. Un affichage et un enregistrement en continu de la pression différentielle par unité signalent les éléments saturés ou endommagés par une augmentation ou une chute de différence de pression. En général, la différence de pression dans le filtre de canal ne doit pas dépasser 250 à 500 Pa, en fonction de la qualité et de la conception du filtre.

Pour le remplacement des cassettes de filtration encrassées, les cadres sont retirés latéralement hors du boîtier puis les éléments sont démontés en desserrant les dispositifs de fixation.

A partir de la plateforme de maintenance, les éléments de filtration sont remplacés manuellement par le personnel de service (tenue de protection complète). Cette zone est entièrement confinée afin d'éviter une émission dans l'environnement pendant les travaux sur le filtre de canal.

Le confinement est constitué d'une construction en acier munie sur tous les côtés de tôles trapézoïdales (éléments en sandwich). Pendant le changement des éléments de filtration, le confinement est mis en dépression. La dépression est réglée à l'aide de clapets ajustés manuellement qui se trouvent du côté de l'aspiration sur la gaine de ventilation de l'installation de traitement. Pour garantir l'hygiène et la sécurité, une zone humide faisant office de sas (conteneur sur la plateforme de maintenance) est disposée en amont du confinement.

Les éléments de filtration usagés sont emballés de manière étanche aux poussières dans des sacs en matière plastique et évacués de manière appropriée par l'intermédiaire de récipients prévus à cet effet.

Les mesures de protection du personnel pour le remplacement des filtres seront décrites dans le cadre de la demande d'autorisation d'exploitation sur la base d'une analyse succincte des risques.

4.3 Filtre continu (Option 1)

Pour des quantités de poussières plus importantes, la première étape de filtration est remplacée par un filtre continu nettoyable selon la description de l'option 1.

Un élément de filtration rigide et hydrophobe est utilisé en tant que milieu filtrant. Le corps de base est constitué de PE fritté.

La surface est munie d'un revêtement constitué de polytétrafluoréthylène PTFE. Grâce à ce revêtement une filtration purement superficielle est effectuée.

Fig. 4: Vue de l'élément de filtration des poussières du filtre continu

Avec un degré de perméabilité < 0,01% ou 0,1% dans des conditions normées et avec une performance de filtration garantie inférieure à 0.2 mg/m³, une qualité d'air traité de classe H11 (classe de poussières M) est atteinte. (Rapport de contrôle de l'Institut Professionnel de la Sécurité au Travail, Berufsgenossenschaftliches Institut für Arbeitsschutz du 05.02.2008).

Grâce à la filtration purement superficielle sur un corps de filtration rigide, une taille de pores constante (polyéthylène fritté) est obtenue et l'usure du milieu de filtration est relativement faible.

Il est probable que le filtre HEPA de la deuxième étape ne soit que faiblement alimenté et que des durées de vie relativement longues soient ainsi obtenues.

La collecte des poussières s'effectue dans des récipients fermés.

4.3.1 Description de l'installation à filtre continu

La première étape de filtration est constituée de 5 unités identiques de 23'000 m³/h chacune.

L'installation de filtration est subdivisée en 5 parties différentes à l'intérieur. Cela est obtenu grâce à la séparation des différentes zones des modules. La concentration en poussières au niveau de l'entrée du filtre peut être de 1'000 mg/m³ maximum.

La concentration en poussières à la sortie de chaque zone est surveillée afin de pouvoir détecter une éventuelle fuite. Ainsi, lors d'un dépassement d'une concentration déterminée, la zone concernée peut être déconnectée et inspectée sans devoir mettre hors service l'ensemble de l'installation de filtration.

Le nettoyage des éléments de filtration s'effectue automatiquement à contre-flux avec un nettoyage à jet pulsant pendant l'exploitation en continu. Les poussières se détachent par grosses plaques sans se pulvériser en fines particules. Les paramètres du nettoyage sont ajustés selon les caractéristiques de l'exploitation et les propriétés des poussières (de manière spécifique au process) à l'aide d'un appareil de commande.

Une concentration dans l'air traité < 0,2 mg/m³ est garantie par le fabricant.

4.3.2 Exploitation du filtre continu

Le filtre continu fonctionne de manière entièrement automatique. Le nettoyage des poussières sur les cellules de filtration est effectué à l'aide de lances à air comprimé qui nettoient périodiquement le corps de filtration. Les poussières tombant dans l'entonnoir de captage sont collectées. L'évacuation des poussières s'effectue dans des big-bags qui sont munis, en tant que récipients pour matières dangereuses, d'un liner interne et qui garantissent ainsi une manipulation sûre. Les big-bags sont ensuite évacués pour leur élimination.

Pendant la durée du projet, lors d'une exploitation appropriée, aucune intervention régulière n'est à attendre sur ce système.

Fig. 5: Big-bag de conception spéciale pour le transport des poussières en suspension

Fig. 6: Exemple d'une installation de filtration sous la forme d'un filtre continu

5 Postcombustion thermique régénérative (PCR)

5.1 Description du procédé

Le domaine d'application principal de la postcombustion thermique régénérative (PCR) est le traitement d'effluents gazeux avec une teneur relativement faible à très faible en polluants (en général de 1 à 3 g/m³), si la chaleur produite par le processus de combustion n'est pas utilisée. Un mode d'exploitation autotherme est envisageable à partir d'une teneur en polluants de 2 à 3 g/m³. Les taux de transformation se situent entre 90 et 97%, selon le temps de séjour dans la chambre de combustion.

Dans la PCR, un préchauffage des effluents gazeux dans les échangeurs de chaleur de régénération permet une récupération de chaleur interne extrêmement importante. Selon la différence de température et le concept de l'installation, des rendements thermiques jusqu'à 97% sont possibles.

Dans l'utilisation régénérative de la chaleur produite lors de la PCR, le transfert de chaleur s'effectue de l'air traité vers l'air pollué froid au minimum dans deux unités d'échangeurs de chaleur identiques mais séparés. Chaque unité d'échangeur de chaleur contient un échangeur de chaleur en céramique avec une capacité thermique élevée et pouvant en même temps résister à une charge thermique élevée.

La figure 7 représente le fonctionnement d'une postcombustion régénérative avec trois chambres à échangeurs de chaleur en céramique.

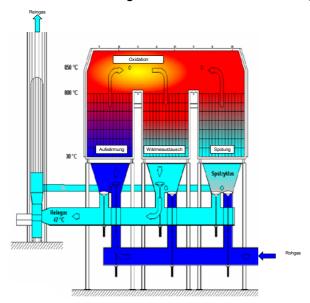


Fig. 7: Schéma de principe de la PCR (installation à 3 chambres)

L'air à traiter traverse les échangeurs de chaleur du bas vers le haut et est préchauffé au niveau de la surface chaude des corps en céramique en nids d'abeilles (régénérateurs) jusqu'à l'oxydation des polluants. La température nécessaire pour la réaction des polluants, de 800 à 850°C, est obtenue grâce à l'injection de gaz dans le flux d'air à traiter et/ou grâce au fonctionnement d'un brûleur auxiliaire supplémentaire dans la chambre de combustion.

Les produits d'oxydation formés par la combustion des polluants organiques (hydrocarbures, aromates) sont principalement du CO₂ et de l'eau. Des polluants gazeux acides sont en outre produits par les polluants halogénés, comme par exemple du HCI. Ces gaz doivent être éliminés de l'air traité par d'autres mesures afin de respecter la valeur limite de l'OPair.

Après avoir quitté la chambre de combustion, l'air traité chaud traverse les régénérateurs du haut vers le bas et se refroidit, selon le mode d'exploitation, à environ 40 à 95°C et la chaleur apportée ainsi à la céramique peut alors être utilisée dans le cycle suivant pour le préchauffage de l'air à traiter froid entrant dans ce régénérateur.

Dans la chambre non traversée, les restes d'air à traiter sont expulsés en direction de la chambre de combustion à l'aide d'un rinçage avec de l'air traité afin que l'air non traité ne puisse pas pénétrer dans l'air traité et d'éviter ainsi des pics d'émissions.

5.2 Description de l'installation

L'installation de traitement thermique de l'air doit être dimensionnée pour un débit maximal de 110'000 m³/h. Une installation à 5 chambres en acier est prévue en tant que variante.

Dans cette installation, 2 régénérateurs sont alimentés en air à traiter de manière alternée dans le temps et l'air traité est extrait de 2 récipients. Le cinquième régénérateur est rincé avec de l'air pur entre les commutations.

La forme de construction peut aussi bien être ronde que rectangulaire. Les parties de l'installation représentées sur les plans d'implantation peuvent varier selon les fabricants, le principe de fonctionnement restant néanmoins identique.

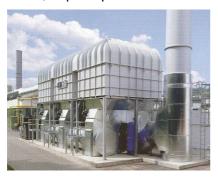


Fig. 8: Exemples de constructions d'installations PCR rectangulaire et ronde

L'installation est implantée en plein air. La chambre de combustion et l'enceinte du régénérateur sont isolés à l'intérieur comme à l'extérieur à l'aide de fibres de céramique haute-température afin d'éviter une baisse de température en dessous du point de rosée. En outre, les parties de la construction dans lesquelles, du fait de la température, de la condensation pourrait se former sont chauffées électriquement (clapets d'air à traiter, fond des récipients).

Le corps d'accumulation en céramique est constitué de différents types de céramiques spéciales à structure en nids d'abeilles (blocs en nids d'abeilles de 150 mm de hauteur) qui sont combinées entre elles afin d'obtenir une capacité de stockage de la chaleur optimale, une bonne résistance à la température et afin d'améliorer la conduite des flux et de réduire l'abrasion.

Fig. 9: Matériau régénérateur à structure en nids d'abeilles

Les chambres abritant les échangeurs de chaleur sont constituées de boîtiers en acier cylindriques ou cubiques munis d'ouvertures pour la maintenance et le contrôle (trous d'homme).

Les ouvertures de révisions, les boîtiers des brûleurs et d'autres éléments de montage et de contrôle sont accessibles par une plateforme de commande et de maintenance constituée d'une grille couverte d'un toit.

Pour la phase de démarrage, la PCR est alimentée en air frais à partir des ventilateurs des brûleurs. Dès que les régénérateurs resp. les chambres de combustion ont atteint la température de service nécessaire, la commutation sur fonctionnement normal a lieu.

Pour le rinçage, de l'air traité extrait du côté sous pression des ventilateurs est retourné dans les régénérateurs par l'intermédiaire d'une conduite d'air de rinçage équipée d'une commande à clapets.

Les clapets d'air pollué et d'air traité sont conçus de manière étanches à 100% grâce à un joint d'étanchéité à double bourrelet avec un système d'air de purge ou bien à l'aide de fabrications spéciales équivalentes permettant d'éviter les fuites et sont munis d'une commande à vérins pneumatiques.

Les brûleurs sont alimentés avec du gaz liquide. Pour le démarrage et la mise en température de service des régénérateurs, deux brûleurs à gaz à air soufflé sont utilisés.

En fonctionnement normal, on vise à réaliser, à l'aide d'une injection dosée de gaz dans le flux d'air pollué, un fonctionnement sans flamme lorsque le brûleur principal est arrêté afin d'obtenir les avantages d'une combustion optimisée avec une consommation réduite d'énergie et des émissions minimisées. En même temps l'intervalle de réglage de l'apport de chaleur augmente et l'alimentation en air de combustion peut être en grande partie arrêtée.

Les parties d'installation sensibles au gel resp. dans lesquelles une condensation de substances acides peut se produire pouvant conduire à des risques de corrosion sont chauffées électriquement et isolées.

Le système permettant de commuter les flux d'air (clapets d'air), les cycles et les temps de commutation ainsi que l'exécution des corps en nids d'abeilles dépendent des fabricants. Ces déterminations seront donc effectuées lors de la planification de détail.

Fig. 9: Exemple de réalisation : Vue des conduites d'air pollué et traité, PCR

Les caractéristiques provisoires de la PCR sont indiquées dans le tableau suivant.

Paramètres	Unité	Valeur
Débit	m³/h	
min.		60'000
max.		110'000
Température des effluents à traiter	° C	environ 5 - 40
Température de l'air traité	° C	environ 40 – 95
Puissance des brûleurs max.	kW	2 x 2'100
Temps de séjour dans la chambre de combustion	S	1.0 (pour un débit max.)
Température de la chambre de combustion	° C	800 - 850
Consommation d'énergie		(combustion du gaz)
min.	kW	environ 1100
max.	kW	environ 2750

Tab. 6: Caractéristiques provisoires PCR

5.3 Fonctionnement

En mode automatique, l'installation PCR est utilisée en dépression. Les boucles de commande et de régulation programmées sont logées dans un API conçu de manière redondante.

En fonctionnement normal, une commande automatique de la température de la chambre de combustion a lieu qui régule le brûleur resp. l'injection de gaz en fonction de valeurs consignes présélectionnées. La régulation et la surveillance de la température sont cruciales, car ce sont les facteurs prépondérants permettant d'obtenir une combustion complète des polluants.

Du fait qu'un grand excès d'oxygène est toujours présent, une surveillance continue de $l'O_2$ et du CO est inutile. Une mesure ponctuelle sera effectuée lors de la mise en service de l'installation.

Par ailleurs, les températures de l'air pollué et traité ainsi que la pression différentielle des régénérateurs sont automatiquement surveillées. Si les températures de l'air traité dépassent une valeur limite prédéterminée, de l'air frais est automatiquement introduit par l'intermédiaire de clapets d'air frais pour le refroidir afin de protéger les parties suivantes de l'installation.

Un mode stand-by, prévu pour maintenir la température de la chambre de combustion avec une consommation d'énergie minimale (brève mise hors service) est également programmé ainsi qu'un cycle de démarrage et d'arrêt de l'installation PCR.

Pour des arrêts soudains et imprévisibles de l'installation (arrêt de l'installation sans alimentation en air) un programme spécial est prévu pour une mise à l'arrêt sûre, nécessaire à la protection de la construction en acier et des corps en nids d'abeilles contre des variations de températures trop importantes.

En plus de la PCR une installation à filtres à charbon actif dimensionnée de manière entièrement redondante est prévue pour le cas où des travaux de révision et/ou de réparation prévus ou imprévus devaient être effectués ou dans le cas d'un arrêt de la PCR. Il est possible de passer manuellement ou automatiquement de l'installation thermique à

l'installation de filtration sur charbon actif. Les émissions d'effluents gazeux non traités peuvent donc être évitées de manière sûre.

Le système d'alimentation en air comprimé est conçu de manière entièrement redondante avec un circuit de commutation de charge des compresseurs afin de pouvoir commander de manière fiable les clapets pneumatiques de l'air traité et pollué des chambres de régénération.

L'ensemble des pièces mobiles comme les commandes de clapets, les arbres de moteurs etc. est muni d'une protection contre les contacts (grille de protection ou équivalent) conforme aux réglementations de la SUVA relatives à la sécurité du travail en viqueur.

5.4 Protection contre les explosions

Du fait de l'existence d'une source d'inflammation dans la PCR, la directive ATEX ne peut plus être appliquée. Un examen des installations de traitement des effluents gazeux sera effectué par le biais d'une analyse des risques lorsque le concept définitif d'installation sera connu et au plus tard avant la demande d'autorisation d'exploitation.

5.5 PCDD/F

5.5.1 PCDD/F existants

Puisque les PCDD/F, du fait de leur tension de vapeur, sont des substances peu volatiles, ils ne peuvent être émis par voie aérienne que sous forme particulaire. Du fait de la pré-filtration exécutée au moyen de filtres à poussières en suspension H13 avec un degré de filtration moyen de 99,95%, aucune dioxine ou aucun furane lié de manière particulaire n'est attendu dans la zone de combustion ou dans le flux d'air traité.

Pour accroître la sécurité, le dimensionnement de la chambre de combustion de la PCR est tel que, grâce à un temps de séjour suffisant (> 1 s) à des températures jusqu'à 850°C, une destruction thermique sûre et complète des dioxines gazeuses ou liées à des particules est attendue.

5.5.2 Formation de PCDD/F

Du fait du procédé, les conditions d'une formation (synthèse de novo) de PCDD/F en phase gazeuse en présence de chlore libre et de carbone (de préférence sous forme particulaire) sont défavorables dans une PCR. En effet, une phase de refroidissement suffisamment rapide (< 1 s) est effectuée dans l'intervalle de température critique (250 à 450° C), il manque des catalyseurs métalliques (par exemple du cuivre), une concentration en $O_2 > 10\%$ suffisante est toujours présente et il n'existe pas de «sites de formation» situés en permanence dans la zone de condensation, comme cela peut être le cas dans les échangeurs de chaleur ou les chaudières métalliques.

Du fait de l'alimentation alternée des masses d'échangeurs de chaleur en céramique par une inversion de l'écoulement de l'air, le réchauffage est constant et de telles zones de condensation avec le cas échéant une synthèse de novo sont ainsi évitées.

5.5.3 Conclusion

Selon les explications précédentes, la probabilité d'un dépassement de la valeur limite des PCDD/F dans l'air traité de la PCR peut être considérée comme très faible.

Au cours de la phase pilote, l'analyse des PCDD/F, permettra de prouver que les valeurs limites d'émissions imposées par l'OPair peuvent être respectées de manière fiable.

Si, contre toute attente, les résultats d'analyses de la phase pilote montraient des concentrations non admissibles de PCDD/F dans l'air traité, des mesures techniques préventives devront être mise en place. Le dispositif de lavage peut ainsi à court terme être post-équipé d'un garnissage spécial pour une adsorption ciblée des PCDD/F.

6 Ventilateurs

6.1 Description du procédé

Pour l'étape de traitement thermique, une installation de ventilateurs autonome et redondante est installée. Les unités nécessaires sont disposées en aval de l'étape thermique sous la forme de ventilateurs à tirage par aspiration.

Le débit d'air est de 110'000 m³/h maximum et la pression est estimée à environ 6'500 Pa. Ce chiffre sera affiné lors de la planification de détail lorsque tous les éléments de l'installation seront connus. Les ventilateurs seront finalement dimensionnés en fonction de ce chiffre en tenant compte d'une réserve de sécurité.

Le débit réel dépend essentiellement des exigences de volumes d'air variables en fonction des activités effectuées dans la halle de préparation et dans la halle des sols (par exemple les processus d'entrée et sortie via les sas). Un réglage continu et automatique des unités est donc nécessaire.

L'installation de filtration sur charbon actif (réserve de l'étape thermique en cas de panne) est équipée d'un groupe de ventilateurs autonome également utilisé en mode aspiration. Les ventilateurs sont conçus pour un débit d'air de 110'000 m³/h en garantissant la redondance, la pression est d'environ 4'500 Pa.

6.2 Description de l'installation

Tous les ventilateurs sont montés avec un châssis de base et les unités d'entraînement sur des socles en béton séparés. Ils sont découplés de la tuyauterie par des compensateurs du côté de l'aspiration et de la pression.

L'entraînement est effectué par des moteurs industriels à couplage direct.

Aux points bas se trouvent des manchons d'écoulement du condensat avec des conduites d'écoulement pouvant être chauffées.

6.3 Description du fonctionnement

Le fonctionnement des unités est entièrement automatique. Les ventilateurs sont régulés chacun par un convertisseur de fréquence en fonction de la mesure de dépression ou du débit dans les bâtiments.

Le signal permettant de contrôler le convertisseur de fréquence résulte des mesures de dépression et des débits dans les bâtiments. Le convertisseur de fréquence est commandé par une valeur consigne, calculée de façon à maintenir une dépression continue dans la halle de préparation, la halle d'excavation et la halle des sols, tout en évitant que de brèves variations de pression (par exemple mise en service et hors service des ventilateurs, processus d'entrée et de sortie par les sas) ne conduisent à un fonctionnement instable.

Les ventilateurs sont utilisés de façon à ce qu'un nombre d'heures d'exploitation identique soit atteint et de façon à obtenir une alimentation alternée de l'unité d'exploitation et de l'unité de réserve.

L'essai des ventilateurs pour l'installation de filtration sur charbon actif est documenté dans un mode d'emploi et est effectué régulièrement. Cet essai permet également de tester l'ensemble des parties d'installation (par exemple les commandes des clapets) quant à leur disponibilité.

7 Laveur

7.1 Description du procédé

Pour les produits résiduels formés lors de l'oxydation des composés halogénés (par exemple HCI), une étape de lavage supplémentaire est nécessaire.

Dans un intervalle de température d'environ 40 à 95°C à la sortie de la PCR, une colonne de lavage garnie de corps de remplissage et équipée d'une recirculation de liquide de lavage est installée pour l'absorption de ces composés. Ce système constitue une variante avantageuse du point de vue du procédé et d'un point de vue économique.

Lors du passage de l'air au travers des corps de remplissage à contre-courant, du liquide de lavage est pompé au-dessus des corps de remplissage conduisant à un transfert gaz→liquide optimal grâce aux importantes surfaces d'échange. Les composés acides contenus dans l'air se dissolvent dans le liquide et réagissent en donnant des sels neutres (par exemple NaCl). Pour cela, de la soude est dosée dans le circuit de recirculation et la valeur du pH est ajustée à la valeur consigne nécessaire (pH = 3 – 4).

Suite à la formation de sels continuelle dans le circuit du dispositif de lavage et à l'évaporation de l'eau de lavage dans l'air traité chaud, la salinité de l'eau de lavage augmente. Cette augmentation de la salinité est compensée par le prélèvement d'eau de lavage (décantation) et par l'ajout d'eau fraîche. L'eau de lavage salée est introduite dans l'installation de traitement des eaux sur site (STEP DIB, eaux faiblement contaminées).

Après le laveur, l'air traité est saturé à 100% d'humidité et il contient des aérosols qui sont séparés à l'aide d'un éliminateur de gouttelettes.

L'humidité dans l'air traité peut, selon les conditions météorologiques, provoquer la formation d'un panache de vapeur d'eau à la sortie de la cheminée.

Pour une élimination simultanée des PCDD/F, le laveur peut être équipé de corps de remplissage spéciaux qui permettent d'éliminer les polluants résiduels jusqu'à une valeur inférieure à la valeur limite OPair (voir également le chapitre 5.5).

7.2 Description de l'installation

Le laveur est conçu comme une colonne verticale. L'air traité réchauffé provenant de la PCR est transporté vers la zone au-dessus du puisard de pompage et refroidi auparavant, selon le mode de fonctionnement de la PCR par un dispositif Venturi ou par une rampe de buses. Ensuite, l'air s'évacue vers le haut à travers les corps de remplissage en PP à surface d'échange importante (par exemple de type High – Flow 50).

Le liquide de lavage est collecté dans le puisard de pompage sous les corps de remplissage et est réintroduit avec une pompe de recirculation aux normes chimiques dans l'étage des buses. La valeur du pH est contrôlée continuellement à l'aide d'un dispositif de mesure et de régulation du pH et celui-ci est automatiquement corrigé à l'aide d'une pompe de dosage de soude.

Le réservoir pour la solution de soude caustique (NaOH) est placé dans un bac de rétention et est équipé des dispositifs de sécurité nécessaires pour la détection et la signalisation d'une fuite, d'un débordement et du niveau de remplissage minimal.

Des plateformes d'inspection et de maintenance munies d'échelles sont prévues pour l'accès à la colonne.

Paramètres	Unité	Valeur
Débit d'air	m³/h	110'000
Perte de charge	Ра	1'000
Nombre		1
Matériaux		
Colonne		PRV / PE
Corps de remplissage		PP
Buses		PP
Eliminateur de gouttelettes		PP
Puisard de la colonne		PRV avec protection chimique
Débit d'eau de recirculation	m³/h	300
Puissance électrique	kW	30
Débit d'eau fraîche	m³/h	1.0 (à une température de l'air à traiter de 70°C)
Agent de neutralisation	kg/h	25 (NaOH 20-30 %)
Décantation	m³/h	0.1

Tab. 7: Caractéristiques du laveur

L'installation est implantée à côté des ventilateurs de tirage par aspiration. Du fait de la hauteur de l'installation, le manchon d'évacuation d'air du laveur débouche dans la cheminée à une hauteur d'environ 14 m au-dessus des fondations. L'ordre de grandeur du diamètre du laveur est de 4.50 mètres.

7.3 Description du fonctionnement

L'équipement de mesure correspond à celui d'une installation automatique. Il est principalement constitué d'une surveillance du débit du liquide de lavage, d'une surveillance de la pression différentielle du garnissage de la colonne, d'une régulation de niveau et d'une surveillance du liquide de lavage, d'une régulation du pH du liquide de lavage ainsi que d'un affichage de la température de l'air traité.

Le transport du liquide de lavage est très important pour un fonctionnement fiable de l'installation. L'air évacué ne peut être lavé que lorsque le liquide de lavage est mis en circulation. Pour le circuit de lavage, deux pompes identiques prêtes à l'emploi sont donc utilisées.

Du fait que le tamponnement du pH est garanti par la grande quantité de liquide de lavage même lors d'une panne de la pompe de dosage de soude, une pompe de réserve, pouvant être mise en service dans un temps très court en cas de panne est prévue.

8 Installation de filtration sur charbon actif

8.1 Description du procédé

L'installation de filtration sur charbon actif est totalement redondante pour l'installation de traitement thermique des effluents gazeux et est donc conçue pour un débit d'air de 110'000 m³/h. Elle peut être mise en service immédiatement et à tout moment (pas de temps de mise en température nécessaire). Lors d'une défaillance de l'installation thermique (PCR ou dispositif de lavage), cette installation est automatiquement mise en service afin de garantir un fonctionnement ininterrompu des travaux d'assainissement.

Du fait de son fonctionnement en tant qu'installation redondante, il est attendu que les durées d'exploitation de cette installation soient faibles et donc qu'un remplacement du charbon actif ne soit pas nécessaire au cours de l'assainissement. Une détermination claire de la capacité de se charger et de la durée de vie du charbon actif n'est cependant pas possible. Un claquage éventuel a lieu lentement et avec des concentrations augmentant lentement. Cette augmentation doit être surveillée à l'aide des mesures d'émissions afin de pouvoir remplacer les filtres si nécessaire.

Dans des conditions d'exploitation défavorables (charges de polluants importante dans l'air) une auto-inflammation du charbon actif ne peut être exclue. Une installation de détection et d'extinction d'incendie est donc prévue.

8.2 Description de l'installation

Le type d'exécution des adsorbeurs dépend du fabricant. La plupart du temps, pour les gros adsorbeurs, des containers de transport maritime modifiés de 40 pieds sont utilisés, ce qui a l'avantage de permettre de les transporter par la route. Ces adsorbeurs présentent un fond perforé horizontal permettant de déposer le charbon actif et de répartir l'air. Le lit de filtration est traversé du bas vers le haut. Le travail nécessaire pour une répartition optimale ainsi que pour le chargement et le remplacement du charbon est relativement important.

En variante, des récipients ronds peuvent être utilisés en tant qu'adsorbeurs. Ces récipients sont traversés radialement de l'intérieur vers l'extérieur et ils présentent un remplissage de charbon actif en tant que lit de filtration (voir fig. 11). Grâce à cette disposition, il est possible d'obtenir un guidage avantageux de l'air dans un adsorbeur compact. La charge de charbon actif est fixée par des tôles perforées en acier inoxydable. Les ouvertures de remplissage en haut du récipient ainsi que les ouvertures de vidange au fond du récipient facilitent le remplissage et la vidange du charbon actif.

La fonction de l'adsorbeur est dans tous les cas la même, quelle que soit le type de construction. Pour la présente planification, une installation avec des récipients ronds et une hauteur de lit de 0,8 à 1,0 m a été choisie, représentée dans le schéma d'implantation, chapitre 12.2. La répartition du débit d'air s'effectue ici sur quatre unités identiques exploitées en parallèle et pouvant être alimentées chacune avec un débit maximal d'effluents gazeux de 27'500 m³/h.

Dans la planification détaillée, la forme des filtres et leur nombre seront choisis en fonction de leur rentabilité.

Du fait que l'étape de traitement à charbon actif sert de réserve pour la PCR en cas de panne, des ventilateurs à tirage par aspiration supplémentaires et redondants, qui aspirent au travers des adsorbeurs, sont installés.

Pour le remplissage des adsorbeurs, on utilise un charbon actif à haute capacité d'adsorption et avec une structure de pores optimisée ainsi qu'avec une capacité de résistance importante aux sollicitations thermiques.

Paramètres	Unités	Valeur
Débit	m³/h	110'000
Nombre		4
Vitesse d'écoulement	m/s	0.25
Surface d'écoulement	m²	128
Diamètre (D)	mm	3'400
Lit de charbon actif :		
Hauteur de la couche (H)	mm	4'700
Hauteur du lit (B)	mm	800 - 1000

Tab. 8: Caractéristiques provisoires de l'adsorbeur, version ronde. Cotes D, H et B: voir fig. 11

8.3 Description du fonctionnement

Le fonctionnement est automatique avec une commutation sur les adsorbeurs, le programme de mise hors service de la PCR étant initié simultanément. Après la mise en service des adsorbeurs, ceux-ci sont aspirés indépendamment de l'installation thermique par un groupe de ventilateurs séparé au travers des filtres à poussières situés en amont.

Pour des raisons de protection contre des feux couvant (hot spots) dans les lits de charbon actif, un dispositif de détection et d'extinction automatique d'incendie est disposé dans les filtres. Pour la détection d'incendie, une surveillance de valeur différentielle du CO est prévue. Lors du dépassement d'une valeur limite prédéterminée, le processus d'extinction se déclenche automatiquement. En même temps, le récipient de filtration correspondant est découplé du flux d'air par des clapets motorisés du côté de la pression et du côté de l'aspiration et noyé avec un gaz inerte (par exemple N₂ ou CO₂).

En outre, une possibilité de noyage par l'intermédiaire d'une alimentation d'eau est prévue afin d'obtenir une limitation rapide de la température dans l'adsorbeur.

Le déclenchement de l'installation d'extinction d'incendie est également possible manuellement. Les signaux provenant de l'installation sont affichés dans la salle de commande.

Dans le cas où une mise hors service a lieu en même temps dans plusieurs filtres à la suite d'une détection d'incendie, il est nécessaire de commuter sur une conduite de bypass entre le filtre à poussières et le ventilateur d'évacuation d'air afin de maintenir une dépression dans les halles.

Fig. 10: Exemple d'adsorbeur à charbon actif, exécution en forme de container

Les valeurs d'émissions pour le carbone total sont contrôlées en continu de manière analogue à l'installation thermique, à l'aide d'un FID selon le chapitre 11.

Si une teneur en polluants supérieure à la valeur d'alarme déterminée est détectée par les appareils de mesure dans l'air traité après le charbon actif, un remplacement du charbon actif est effectué. Il est ainsi garanti que le charbon actif est utilisé de manière optimale et en même temps que la concentration dans l'air traité se maintiennent en dessous des valeurs limites.

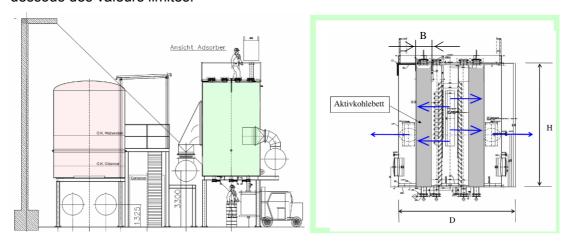


Fig. 11: Exemple d'adsorbeur à charbon actif (en vert), version ronde

9 Cheminée d'évacuation

Pour l'évacuation des effluents gazeux traités vers l'atmosphère, une cheminée porteuse avec une hauteur de 42 m est prévue (voir à ce sujet le calcul de la note complémentaire concernant la problématique des NOx en Annexe 2).

L'installation de filtration sur charbon actif et le laveur sont raccordés par l'intermédiaire de manchons de raccordement et de clapets intermédiaires séparés.

La cheminée est réalisée en acier, avec une seule voie et une seule paroi, et placée sur un socle en béton armé. Elle présente une section et une épaisseur de paroi conformes au dimensionnement statique (vitesses d'évacuation de l'air 10 à 15 m/s).

La température de l'air traité à la sortie de la cheminée est de l'ordre de 5 à 40°C.

La disposition ainsi que la réalisation des piquages de mesure au niveau de la plateforme de mesure est conforme aux recommandations sur la mesure des émissions de polluants atmosphériques des installations fixes de l'EMPA (code OFEV: VU-5008-F).

L'accès au lieu de mesure avec une échelle et une plateforme est conforme aux règlements de sécurité en vigueur de la SUVA. Des dispositifs d'éclairage et une alimentation en énergie sont prévus.

10 Électrotechnique et technique MCR

10.1 Électrotechnique

L'armoire de commande à basse tension est disposée à proximité immédiate de l'installation PCR. Elle est équipée d'un interrupteur principal, d'interrupteurs d'arrêt d'urgence redondants ainsi que de tous les fusibles, contacteurs, relais et bornes nécessaires et d'un interrupteur à clé pour le démarrage de l'installation.

10.2 Technique de mesure, de commande et de régulation

Les fonctions de mesure, de commande et de régulation de l'installation de traitement des effluents gazeux sont assurées par des automates programmables industriels (API, par exemple Siemens S7).

Pour le fonctionnement de l'installation, les programmes de base suivants au minimum sont prévus :

- Démarrage et montée en température programmé de l'installation
- Arrêt programmé de l'installation
- Régulation de la dépression au point de transfert
- Régulation de la température de la chambre de combustion
- Surveillance des températures de l'air pollué et de l'air traité
- Surveillance de la pression différentielle (filtres à poussières, PCR)
- Mode stand-by pour le maintien de la température de la chambre de combustion
- Ajout d'air frais, afin de rester en dessous de 10-20% de la valeur LIE
- Ajout d'air frais pour des effluents gazeux à fort pouvoir calorique (température excessive)
- Commutation sur l'installation à charbon actif avec arrêt régulé de la PCR
- Régulation du pH du liquide de lavage avec dosage de soude

La transmission des données au système de commande central est prévue.

En outre, un diagnostic à distance peut être effectué par l'intermédiaire d'un modem si nécessaire.

10.3 Visualisation du processus

Le panneau de commande et d'observation est constitué d'un système de visualisation assisté par ordinateur. La commande est effectuée par l'intermédiaire d'éléments visuels dynamiques qui sont représentés de manière analogue au schéma PID.

Les actions essentielles peuvent être effectuées par l'intermédiaire du PC et sont ainsi assistées par ordinateur c. à. d. munies de verrouillages de sécurité informatiques afin d'éviter un actionnement erroné.

Au système est couplé un logiciel d'enregistrement et d'archivage des données afin de pouvoir enregistrer les données importantes du processus sur des supports d'enregistrement (DVD ou HDD) dans des archives quotidiennes, hebdomadaires ou mensuelles pouvant être restaurées.

En plus du déclenchement dune alarme, les signaux d'erreurs importants sont envoyés à l'imprimante et à l'interface de visualisation.

Pour le diagnostic à distance, un modem est prévu afin de pouvoir transmettre et contrôler, à tout instant et en temps voulu, les données importantes du processus.

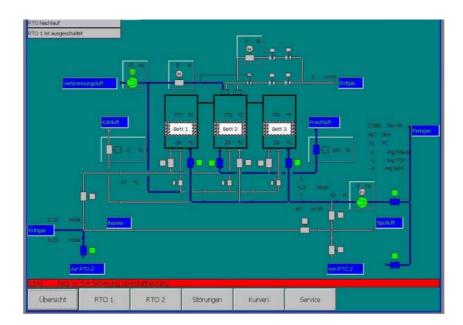


Fig. 12: Exemple de schéma de processus PCR

11 Surveillance des émissions

11.1 Paramètres de fonctionnement de l'installation

Les résultats de mesure provenant de la surveillance automatique du fonctionnement de la PCR garantissent le fonctionnement sûr et économique de l'installation ainsi que le respect des valeurs limites d'émission.

La surveillance des paramètres listés dans le tableau ci-dessous remplit cette fonction.

Paramètres	Unité	Intervalle de mesure
Débit	m³/h	En continu
Température de la chambre de combustion	°C	En continu
Valeur de pH du dispositif de lavage	-	En continu

Tab. 9: Surveillance des émissions

La surveillance de la température de la chambre de combustion ainsi qu'une régulation automatique en fonction de la teneur en polluants garantissent que les concentrations de matières organiques restent inférieures aux valeurs limites de 20 mg C /m³ indiquées dans l'OPair.

Le respect de la valeur limite d'émission pour le HCl est garanti par une commande automatique du dosage de soude dans le liquide de lavage (paramètre de régulation: valeur du pH).

11.2 Paramètres de mesures discontinues

Lors de la mise en service de l'installation et lors de contrôles réguliers, les brûleurs resp. les injecteurs de gaz sont ajustés et optimisés. Les mesures sont protocolées et servent à démontrer que les valeurs imposées par l'OPair sont respectées.

Paramètres	Unité	
CO	mg/m³	
NOx ²	mg/m³	

Tab. 10: Paramètres de mesure pour la mise en service et le contrôle

Par ailleurs, il est prévu d'appliquer le programme d'analyse décrit dans le rapport « Concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007 adapté au traitement oxydatif et représenté dans le Tableau 11.

² Pour l'estimation des concentrations en NOx, voir l'Annexe 2 "Note complémentaire concernant la problématique des NOx"

N°	Composé / Classe de composés	Fréquence	Fréquence à l'arrêt de la PCR ¹
1.	Carbone total au niveau de la cheminée à l'aide de mesure FID	En continu	En continu
2.	Screenings discontinus de l'air à l'aide de GC-MS	4-8 x par jour ² ou 1 x par se- maine ³	2 x par jour
3.	Ammoniac	-	1 x par jour
4.	Cyanure d'hydrogène (HCN)	-	1 x par jour
5.	Dioxine	1 x par semaine ² ou 1 x par tri- mestre ³	-
6.	K1 et K2 et métaux lourds	En fonction de la quantité de poussières (> 0.1 mg/m³)	En fonction de la quantité de poussières (> 0.1 mg/m³)
7.	CO	1 x par trimestre	-
8.	NOx	1 x par trimestre	-
Paramètres physiques			
9.	Débit volumique	En continu	En continu
10.	Mesure des poussières	1 x par semaine	4 x par jour
11.	Pression de l'air	En continu	En continu
12.	Humidité de l'air	En continu	En continu
13.	Différence de pression au niveau du filtre	En continu	En continu
14.	Température	En continu	En continu

Tab. 11: Surveillance des émissions selon le « concept de ventilation et de gestion des effluents gazeux » du 12 juin 2007 adapté au traitement oxydatif.

¹ Un arrêt du traitement thermique n'aura lieu que dans des cas exceptionnels pour des travaux de maintenance ou de réparation.

² pendant la phase pilote

³ pendant le fonctionnement normal.

12 Installations

Les plans d'implantation ci-après constituent une planification de l'implantation au moment de la rédaction des documents pour la demande de permis de construire. Du fait de la conception des installations spécifiques à chaque fabricant, l'implantation peut être différente de celle qui est décrite ici. Le fonctionnement et les procédés restent cependant pour l'essentiel identiques.

12.1 Schéma de l'installation

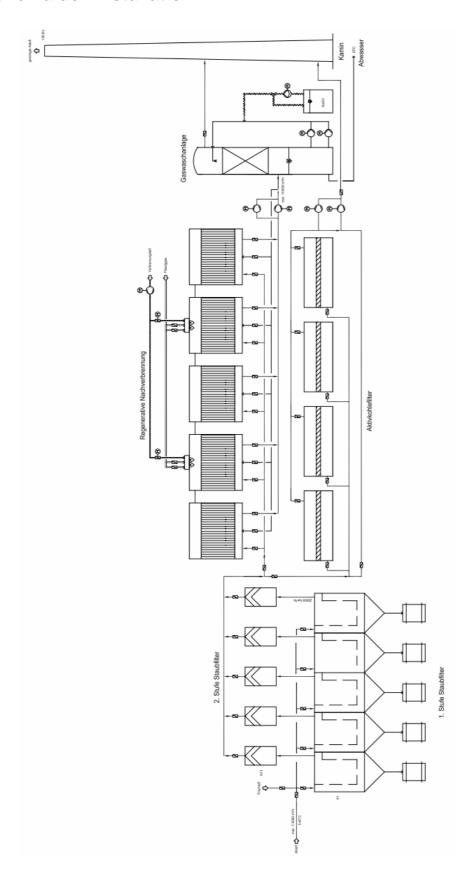


Fig. 13: Schéma

12.2 Plan d'implantation de l'installation

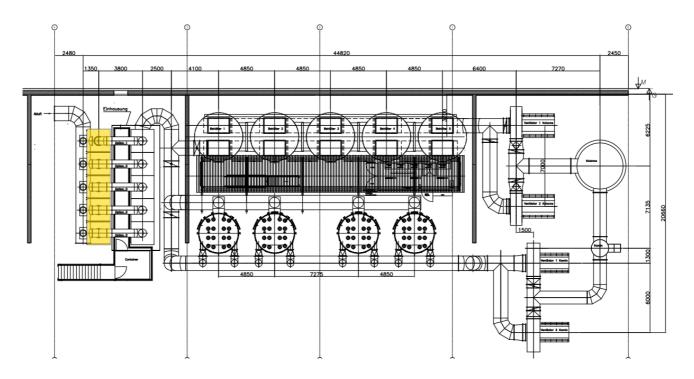


Fig. 14: Plan d'implantation provisoire de l'installation de traitement des effluents gazeux, vue du dessus (en jaune : option avec filtre continu)

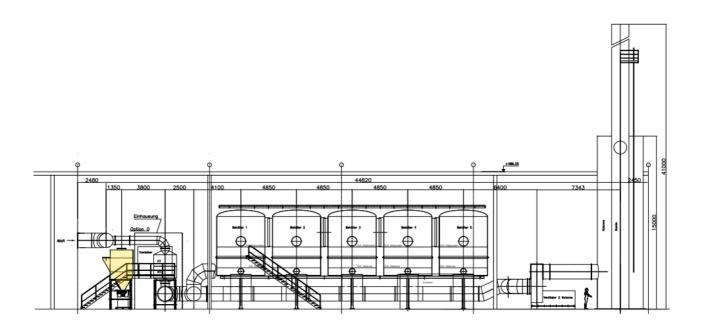


Fig. 15: Plan d'implantation provisoire de l'installation de traitement des effluents gazeux, vue en coupe (en jaune : option avec filtre continu)

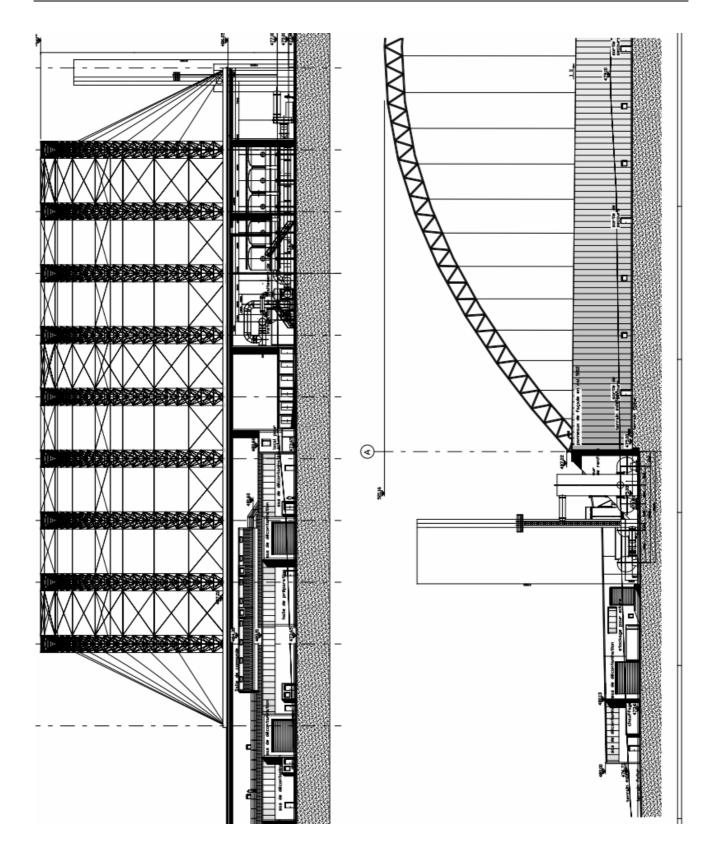


Fig. 16: Vues provisoires de l'installation de traitement des effluents gazeux

Annexe 1 Modèle d'émissions de la halle des sols (Balewa AG)

Halle des sols

Débit d'air largeur longeur longuer longueur longueur longueur longueur longueur largeur longueur largeur longueur largeur longueur largeur longueur largeur longueur largeur longueur long	Exploitation en activité		
longeur hauteur section balayée surface de base volume de la halle lofebit d'air Q _{Ah} Débit d'air Q _{Ah} Débit total de la halle longueur longueur longueur longueur longueur largeur longueur lo			
longeur hauteur section balayée surface de base volume de la halle lofebit d'air Q _{Ah} Débit d'air Q _{Ah} Débit total de la halle longueur longueur longueur longueur longueur largeur longueur lo	largeur	39.1	m
section balayée surface de base 2'273 m² volume de la halle 17'050 m³ air frais de l'extérieur Débit d'air Q _{Ah} Débit total de la halle 20'000 m³/h taux renouv. d'air (TAR) vitesse d'écoulement Calcul des émissions surface des sols à traiter surface des tas 10 00 m² Calcul des émissions surface des tas 900 m² Tas matière humide 2 - longueur 10 1 m largeur 10.1 m largeur 9.2 m Tas matière seche 3 - longueur 10.1 m largeur 9.2 m surface spec. 7 m²/m² surface spec. 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission C org 0.176 kg C/h	_	58.1	m
surface de base volume de la halle 17'050 m³ air frais de l'extérieur Débit d'air Q _{Ah} Débit total de la halle 10'000 m³/h 1.17 h⁻¹ vitesse d'écoulement 0.019 m/s Calcul des émissions surface des sols à traiter surface des tas 10 year and ière humide 10 year and ière seche seche surface effective 10 year and ière seche seche seche surface effective 10 year and ière seche seche seche surface effective 10 year and ière seche seche seche seche surface effective 10 year and ière seche sech	hauteur	7.5	m
volume de la halle 17'050 m³ air frais de l'extérieur Débit d'air Q _{Ah} 20'000 m³/h Débit total de la halle 20'000 m³/h taux renouv. d'air (TAR) 1.17 h⁻¹ vitesse d'écoulement 0.019 m/s Calcul des émissions surface des sols à traiter surface des tas 900 m² Tas matière humide 2 - longueur 33.7 m largeur 9.2 m Tas matière seche 3 - longueur 10.1 m largeur 9.2 m surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission C org 0.176 kg C/h	section balayée	293	m^2
air frais de l'extérieurDébit d'air QAh20'000 m³/hDébit total de la halle20'000 m³/htaux renouv. d'air (TAR)1.17 h⁻¹vitesse d'écoulement0.019 m/sCalcul des émissionssurface des sols à traitersurface des tas900 m²Tas matière humide2 -longueur33.7 mlargeur9.2 mTas matière seche3 -longueur10.1 mlargeur9.2 msurface spec.7 m²/m²surface effective6'300 m²taux d'émission50 mg/m²hdébit des émissions0.315 kg/h(taux d'émission selon B1 stockage intermédiaire)émission air de la halle0.315 kg/h15.8 mg/m³émission C org0.176 kg C/h	surface de base	2'273	m^2
Débit d'air QAh20'000 m³/hDébit total de la halle20'000 m³/htaux renouv. d'air (TAR)1.17 h⁻¹vitesse d'écoulement0.019 m/sCalcul des émissionssurface des sols à traitersurface des tas900 m²Tas matière humide2 -longueur33.7 mlargeur9.2 mTas matière seche3 -longueur10.1 mlargeur9.2 msurface spec.7 m²/m²surface effective6'300 m²taux d'émission50 mg/m²hdébit des émissions0.315 kg/h(taux d'émission air de la halle0.315 kg/hémission air de la halle0.315 kg/hémission C org0.176 kg C/h	volume de la halle	17'050	m ³
Débit total de la halle taux renouv. d'air (TAR) vitesse d'écoulement Calcul des émissions surface des sols à traiter surface des tas Tas matière humide longueur largeur Tas matière seche longueur largeur Surface spec. Surface effective taux d'émission débit des émissions (taux d'émission selon B1 stockage intermédiaire) émission C org 20'000 m³/h 1.17 h⁻¹ 0.019 m/s 10.10 m² 10.11 m 10.11	air frais de l'extérieur		
taux renouv. d'air (TAR) vitesse d'écoulement Calcul des émissions surface des sols à traiter surface des tas Tas matière humide longueur largeur Tas matière seche longueur largeur Surface spec. Tas matière humide largeur Surface spec. Tas matière humide largeur Surface spec. Tas matière humide la la largeur Surface spec. Tas matière humide la l	Débit d'air Q _{Ah}	20'000	m ³ /h
vitesse d'écoulement 0.019 m/s Calcul des émissions surface des sols à traiter surface des tas 900 m² Tas matière humide 2 - longueur 33.7 m largeur 9.2 m Tas matière seche 3 - longueur 10.1 m largeur 9.2 m surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	Débit total de la halle	20'000	m ³ /h
Calcul des émissions surface des sols à traiter surface des tas 900 m² Tas matière humide 2 - longueur 33.7 m largeur 9.2 m Tas matière seche 3 - longueur 10.1 m largeur 9.2 m Surface spec. 7 m²/m² surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	taux renouv. d'air (TAR)	1.17	h ⁻¹
surface des sols à traiter surface des tas Tas matière humide longueur largeur Tas matière seche longueur largeur Tas matière seche longueur largeur surface spec. r m²/m² surface effective f'300 m² taux d'émission débit des émissions longueur longueur largeur 9.2 m surface spec. r m²/m² 6'300 m² taux d'émission débit des émissions longue longueur longueur longueur longueur longueur longueur longueur largeur 9.2 m surface spec. r m²/m² b'ang/m² b'ang/m² b'ang/m² c'emission air de la halle longueur longue	vitesse d'écoulement	0.019	m/s
surface des tas Tas matière humide longueur largeur Tas matière seche longueur largeur Tas matière seche longueur largeur 10.1 m largeur 9.2 m surface spec. 7 m²/m² surface effective fo'300 m² taux d'émission débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	Calcul des émissions		
Tas matière humide 2 - longueur 33.7 m largeur 9.2 m Tas matière seche 3 - longueur 10.1 m largeur 9.2 m surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h			_
longueur largeur Tas matière seche longueur largeur 10.1 m largeur 9.2 m 10.1 m largeur 9.2 m surface spec. 7 m²/m² 6'300 m² taux d'émission débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h			
largeur Tas matière seche longueur largeur surface spec. surface effective taux d'émission débit des émissions (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h			
Tas matière seche longueur longueur largeur surface spec. surface effective taux d'émission débit des émissions (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	_		
longueur largeur 10.1 m 9.2 m surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h			
largeur 9.2 m surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h		_	
surface spec. 7 m²/m² surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	· ·		
surface effective 6'300 m² taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	largeur	9.2	m
taux d'émission 50 mg/m²h débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	surface spec.	•	
débit des émissions 0.315 kg/h (taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	surface effective	6'300	m ²
(taux d'émission selon B1 stockage intermédiaire) émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	taux d'émission	50	mg/m ² h
émission air de la halle 0.315 kg/h 15.8 mg/m³ émission C org 0.176 kg C/h	débit des émissions	0.315	kg/h
15.8 mg/m³ émission C org 0.176 kg C/h	(taux d'émission selon B1 stockage	intermédiaire)	
15.8 mg/m ³ émission C org 0.176 kg C/h	émission air de la halle	0.315	kg/h
S S		15.8	mg/m ³
8.8 mg C/m ³	émission C org		-
		8.8	mg C/m ³

Exploitation	en activité		
débit d'air		[m ³ /h]	20'000
émission		[kg/h]	0.315
débit massiqu	ue total	[kg/h]	0.315
concentration		[mg/m³]	16
conc. C org		[mg C/m ³]	9
Débit massic	que OPAIR		
Classe 1	< 0.1 kg/h	[kg/h]	0.124
Classe 2	< 2.0 kg/h	[kg/h]	0.065
Classe 3	< 3.0 kg/h	[kg/h]	0.040
	< 0.025 kg/h	[kg/h]	0.085
Concentration			
Classe 1	_		6.2
Classe 2	< 100 mg/m ³	[mg/m ³]	3.3
Classe 3			2.0
Classe K3	< 5 mg/m ³	[mg/m ³]	4.2

Exploitation à l'arrêt (nuit et	t wook and)
Débit d'air	t week-end)
largeur	39.1 m
longeur	58.1 m
hauteur	7.5 m
section balayée	293 m ²
surface de base	2'273 m ²
volume de la halle	17'050 m ³
air frais de l'extérieur	
Débit d'air Q _{Ah}	20'000 m ³ /h
Débit total de la halle	20'000 m ³ /h
taux renouv. d'air (TAR)	1.17 h ⁻¹
vitesse d'écoulement	0.019 m/s
Calcul des émissions	
surface des sols à traiter	
surface des tas	900 m ²
Tas matière humide	2 -
longueur	33.7 m
largeur	9.2 m
Tas matière seche	3 -
longueur	10.1 m
largeur	9.2 m
surface spec.	$7 \text{ m}^2/\text{m}^2$
surface effective	6'300 m ²
taux d'émission	25 mg/m ² h
débit des émissions	0.158 kg/h
(taux d'émission réduit de 50% en l'a	
émission air de la halle	0.150 kg/b
	0.158 kg/h
	7.9 mg/m ³
émission C org	0.088 kg C/h
-	4.4 mg C/m ³

Exploitation	à l'arrêt (nuit	et week-end)	
débit d'air		[m ³ /h]	20'000
émission		[kg/h]	0.158
débit massiqu	ue total	[kg/h]	0.158
concentration	l	[mg/m³]	8
conc. C org		[mg C/m ³]	4
Débit massic	que OPAIR		
Classe 1	< 0.1 kg/h	[kg/h]	0.062
	< 2.0 kg/h		0.033
Classe 3	•		0.020
	< 0.025 kg/h	[kg/h]	0.042
Concentration		_	
Classe 1	< 20 mg/m ³		3.1
Classe 2	< 100 mg/m ³	[mg/m³]	1.6
Classe 3			1.0
Classe K3	< 5 mg/m ³	[mg/m ³]	2.1

Annexe 2

Note complémentaire concernant la problématique

des NOx (Balewa AG)

Assainissement définitif de la décharge industrielle de Bonfol

Rapport technique traitement des effluents gazeux Note complémentaire concernant la problématique des NOx

Etat 20.10.2008

Table des matières

1		Formation des oxydes d'azote dans la PCR : généralités 4							
2		Détermination des quantités de NO formé	. 4						
	2.1	NO THERMIQUE DU BRULEUR	4						
	2.2	NO THERMIQUE DE LA COMBUSTION	4						
	2.3	NO CARBURANT / POLLUANTS	5						
3		Résultats de la modélisation	. 6						
4		Hauteur de la cheminée	7						

Figures Fig. 1: Constante d'équilibre et concentration de NO à 20%vol d'O ₂	5
Fig. 2: Diagramme d'écoulement	
Tableaux	
Tab. 1: Emissions de NOx lorsque l'exploitation est en activité	6
Tab. 2: Emissions de NOx lorsque l'exploitation est à l'arrêt	6
Tab. 3: Emissions de NOx lors des conditions particulières	/ 7
Tab. 5: Hauteur de la cheminée pour l'exploitation à l'arrêt	8
Tab. 6: Hauteur de la cheminée dans les conditions particulières	

Abréviations

bci: bci Betriebs-AG

Décharge industrielle de Bonfol Ordonnance sur la protection de l'air Postcombustion régénérative DIB: OPair:

PCR:

1 Formation des oxydes d'azote dans la PCR : généralités

Avec le remplacement d'un traitement des effluents gazeux par adsorption sur charbon actif par un traitement thermique, la formation des oxydes d'azote (NOx) au cours du procédé d'oxydation doit être prise en compte.

L'installation prévue doit respecter les valeurs limites selon l'OPair comme spécifié dans le tableau 5 du rapport technique. Pour le calcul de la hauteur de la cheminée et pour la modélisation de la dispersion une évaluation des émissions de NOx détaillée est nécessaire.

Les oxydes d'azote d'un procédé thermique sont formé exclusivement en forme de NO. À une température inferieur de $620\,^{\circ}$ C le NO est transformé en présence de O_2 à NO_2 . Le terme NOx se réfère à ces deux formes. Les valeurs d'émission sont indiqués que NO_2 .

Dans le procédé d'oxydation thermique des effluents gazeux par une postcombustion régénérative trois sources de formation de NO peuvent être identifiés :

- La formation de NO thermique dans la zone à haute température de la flamme du brûleur
- La formation de NO thermique dans tout le volume des effluents gazeux à la température de combustion
- La formation de NO carburant par oxydation des composants présents dans le carburant ou dans les polluants organiques qui contiennent de l'azote.

2 Détermination des quantités de NO formé

Une détermination quantitative doit être faite pour chacun des trois processus de formation identifiés.

2.1 NO thermique du brûleur

Selon l'OPair annexe 4 chiffre 21 le brûleur de gaz doit respecter une valeur maximale d'émissions de **120 mg/kWh**.

2.2 NO thermique de la combustion

Le principe de la formation de NO thermique a été d'écrit en premier par Zeldovich en 1939.

La formation de NO en fonction de la température et des concentrations en N_2 et O_2 a été décrite par exemple par *G. Kurz, H. Günthoff: NOx from combustion, Chemical Plants&Processing April 1984* dans l'équation 1

$$NO = (N_2 * O_2)^{0.5} * Kp^{-1}$$
 (1)

Où **NO**: concentration en monoxyde d'azote [ppmv]

N₂: concentration en azote [ppmv]

O₂: concentration en oxygène [ppmv]

Kp : constante d'équilibre en fonctionne de la température [-] selon Fig. 1

L'équation (1) n'est valable que dans les conditions idéales d'une combustion adiabatique avec une durée infinie. Pour l'estimation du NO issu d'un procédé thermique tel qu'il

se déroule dans une flamme ou dans un moteur à combustion, les écarts aux conditions idéales sont d'une telle magnitude que les résultats obtenus ne sont pas fiables.

Dans la situation d'une PCR avec un volume et une température bien définis, un flux moins turbulent et un temps de séjour plus long, le résultat obtenu par l'équation 1 peut être adapté aux conditions réelles.

A l'aide d'une calibration du modèle de calcul avec des valeurs mesurées dans des installations existantes, les effets de la température et de la composition des effluents peuvent être étudiés plus en détail.

Formation of NO at infinite reaction time depending on temperature and partial pressure of N2 and O2

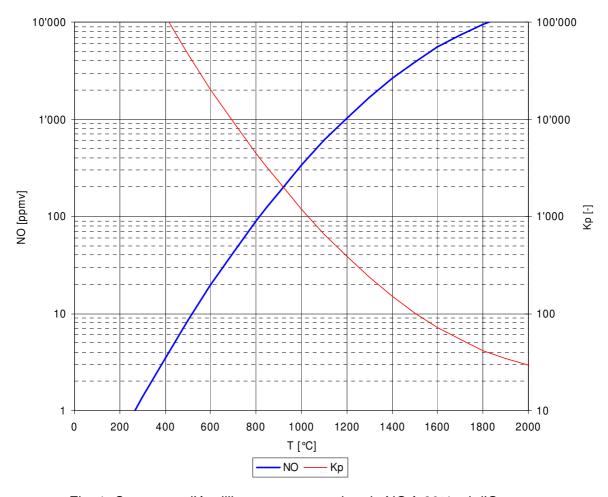


Fig. 1: Constante d'équilibre et concentration de NO à 20% vol d'O₂

2.3 NO carburant / polluants

La troisième source de NO est la conversion des composants issus du carburant et des polluants qui contiennent de l'azote. Selon le fournisseur de propane prévu comme carburant auxiliaire, hormis l'azote N_2 , les teneurs en azote contenu dans le propane ne sont pas détectables.

Dans la matrice des polluants de la DIB, l'aniline et la picoline sont les composés connus qui contiennent de l'azote. Selon le « Bonfol-Mix » l'analyse élémentaire ne montre que 0.02% de N (Tableau 3 du rapport technique traitement des effluents gazeux). La conversion de cet N peut énormément varier entre 20 et 85% en fonction de la du composé qui contient l'azote (les groupes nitro sont par exemple convertis plus faci-

lement en NO que les amines). Dans l'hypothèse d'un worst-case, on considérera une conversion de 100%.

3 Résultats de la modélisation

Pour les trois conditions d'une exploitation en activité, d'une exploitation à l'arrêt et de conditions particulières, le traitement par oxydation thermique a été modélisé. Les calculs détaillés se trouvent en annexe 1.

Les résultats sont présentés dans les trois tableaux suivants.

Exploitation en activité

Le débit des effluents aspiré des halles est de 75'000 m³/h. La température de la combustion est de 850 °C et le débit des effluents gazeux traités standardisé est de 68'850 Nm³/h.

Paramètres	Unité	Valeur
Puissance des brûleurs	kW	1'600
NO ₂ produit par les brûleurs	kg/h	0.191
NO ₂ thermique produit dans la zone de combustion	kg/h	2.546
NO ₂ par conversion des polluants	kg/h	0.009
NO ₂ total	kg/h	2.747
Concentration à la cheminée	mg/Nm ³	40

Tab. 1: Emissions de NOx lorsque l'exploitation est en activité

Exploitation à l'arrêt

Le débit des effluents aspiré des halles est de 68'000 m³/h. La température de la combustion est de 850 °C et le débit des effluents gazeux traités standardisé est de 62'420 Nm³/h.

Paramètres	Unité	Valeur
Puissance des brûleurs	kW	1'500
NO ₂ produit par les brûleurs	kg/h	0.179
NO ₂ thermique produit dans la zone de combustion	kg/h	2.546
NO ₂ par conversion des polluants	kg/h	0.003
NO ₂ totale	kg/h	2.729
Concentration à la cheminée	mg/Nm ³	46

Tab. 2: Emissions de NOx lorsque l'exploitation est à l'arrêt

Conditions particulières

Le débit des effluents aspiré des halles est de 110'000 m³/h. La température de la combustion est de 850 °C et le débit des effluents gazeux traités standardisé est de

101'690 Nm³/h. Dans ce cas la haute concentration en polluants va libérer suffisamment d'énergie de sorte que les brûleurs ne sont pas nécessaires.

Paramètres	Unité	Valeur
Puissance des brûleurs	kW	0
NO ₂ produit par les brûleurs	kg/h	0
NO ₂ thermique produit dans la zone de combustion	kg/h	2.539
NO ₂ par conversion des polluants	kg/h	0.295
NO ₂ totale	kg/h	2.834
Concentration à la cheminée	mg/Nm ³	28

Tab. 3: Emissions de NOx lors des conditions particulières

Les valeurs obtenues par la modélisation peuvent être comparées avec des valeurs mesurées dans des installations existantes. Selon l'information fournie par Züblin Umwelttechnik deux installations en Allemagne atteignent des émissions de NO_2 de 15-30 mg/Nm³. Une installation en Suisse traitant des évents dans une STEP industrielle montre des valeurs d'émissions de NO_2 de 10-30 mg/Nm³.

Les résultats de la modélisation sont légèrement plus hauts que les valeurs mesurées et peuvent ainsi être considérées comme réalistes.

4 Hauteur de la cheminée

La hauteur de la cheminée a été calculée selon l'OPair annexe 6 pour les trois cas de l'exploitation en activité, de l'exploitation à l'arrêt et des conditions particulières.

			OPAIR annexe 1 chiffre 7ff classe 1 debit massique > 0,1 kg/h> conc. ≤ 20 mg/m3	OPAIR annexe 1 chiffre 7ff classe 2 débit massique > 2,0 kg/h conc> conc. ≤ 100 mg/m3	OPAIR annexe 1 chiffre 7ff classe 3 débit massique > 3,0 kg/h > conc. ≤ 150 mg/m3	OPAIR annexe 1 chiffre 8ff classe K3 débit massique > 25 g/h -> conc. ≤ 5 mg/m3	totale des pollantes organiques	OPAIR annexe 1 chiffre 6ff NO _x que NO ₂ et SO ₂ débit massique > 2.5 kg/h > conc. ≤ 250 mg/m3	OPAIR annexe 1 chiffre 6ff HCI débit massique > 0.3 kg/h > conc. ≤ 30 mg/m3	OPAIR annexe 2 chiffre 714 CO ≤ 50 mg/m3	OPAIR annexe 1 chiffre 4ff poussière débit massique > 0.2 kg/h > conc. ≤ 20 mg/m3
émission halle des sols	Q	[kg/h]	0.125	0.066	0.040	0.085	0.316				
émission excavation, preparation	Q	[kg/h]	5.627	2.954	1.823	3.841	14.245				
émission air brut	Q	[kg/h]	5.751	3.020	1.864	3.926	14.561				
éfficacité oxydation thérmique		90%									
émission air propre	Q	[kg/h]	0.553	0.290	0.179	0.377	1.400	2.747	2.066	3.443	1.377
	Q	[g/h]	553	290	179	377	1'400	2'747	2'066	3'443	1'377
	Q	[mg/m3]	8	4	3	5	20	40	30	50	20
Paramètre S	S	[µg/m3]	50	200	1000	10		100	100	8000	50
	Q/S	[m3/µh]	11.06	1.45	0.18	37.75		27.47	20.66	0.43	27.54
débit volumique actuel	Rb	[m3/h]	75'000	75'000	75'000	75'000	75'000	75'000	75'000	75'000	75'000
débit volumique cond. standard	Rn	[Nm3/h]	68'851	68'851	68'851	68'851	68'851	68'851	68'851	68'851	68'851
température sortie de cheminée	T	[℃]	34.4	34.4	34.4	34.4		34.4	34.4	34.4	34.4
flux ascensionnel	F	[m4/s3]	5.34	5.34	5.34	5.34		5.34	5.34	5.34	5.34
Ho selon diagramme1	Ho	[m]	3.11	0.57	0.10	8.73		6.68	5.26	0.20	6.70
facteur pour la canalisation des											
vents	f	[-]	1.25	1.25	1.25	1.25		1.25	1.25	1.25	1.25
hauteur minimale en terrain plat											
sans obsatcle	H1	[m]	3.9	0.7	0.1	10.9		8.4	6.6	0.3	8.4
hauteur des obstacles		[m]	30	30	30	30		30	30	30	30
	1/H1	[1/m]	7.71	42.39	245.45	2.75		3.59	4.56	117.64	3.58
facteur pour végétation	g	[-]	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
surhaussement pour végétation	l1	[m]	30.0	30.0	30.0	30.0		30.0	30.0	30.0	30.0
hauteur de la cheminée	Н	[m]	33.9	30.7	30.1	40.9		38.4	36.6	30.3	38.4

Tab. 4: Hauteur de la cheminée pour l'exploitation en activité

La hauteur de la cheminée de 41 m est dans ce cas déterminée par les substances de la classe K3 (benzène). La quantité émise a été ajustée à la valeur limite de l'OPair. L'efficacité de l'oxydation thermique requise est de 90%.

Dans le cas de l'exploitation à l'arrêt les émissions des polluants organiques ont été calculées avec la même efficacité de l'oxydation thermique. Dans ce cas la hauteur de la cheminée est déterminée par les émissions de NOx et est de 39 m.

			OPAIR annexe 1 chiftre 7ff classe 1 débit massique > 0,1 kg/h > conc. ≤ 20 mg/m3	OPAIR annexe 1 chiftre 7ff classe 2 debit massique > 2,0 kg/h conc> conc. ≤ 100 mg/m3	OPAIR annexe 1 chiftre 7ff classe 3 débit massique > 3,0 kg/h> conc. ≤ 150 mg/m3	OPAIR annexe 1 chiffre 8ff classe K3 débit massique > 25 g/h	totale des pollantes organiques	OPAIR annexe 1 chiffre 6ff NO _x que NO ₂ et SO ₂ débit massique > 2.5 kg/h > conc. ≤ 250 mg/m3	OPAIR annexe 1 chiftre 6ff HCI débit massique > 0.3 kg/h > conc, ≤ 30 mg/m3	OPAIR annexe 2 chiffre 714 CO ≤ 50 mg/m3	OPAIR annexe 1 chiftre 4ff poussière débit massique > 0.2 kg/h > conc. ≤ 20 mg/m3
émission halle des sols	Q	[kg/h]	0.062	0.033	0.020	0.043	0.158				
émission excavation, preparation	Q	[kg/h]	1.940	1.019	0.629	1.324	4.912				
émission air brut	Q	[kg/h]	2.003	1.051	0.649	1.367	5.070				
éfficacité oxydation thérmique		90%									
émission air propre	Q	[kg/h]	0.193	0.101	0.062	0.131	0.487	2.729	1.873	3.121	1.248
	Q	[g/h]	193	101	62	131	487	2'729	1'873	3'121	1'248
	Q	[mg/m3]	3	2	1	2	8	44	30	50	20
Paramètre S	S	[µg/m3]	50	200	1000	10		100	100	8000	50
	Q/S	[m3/µh]	3.85	0.51	0.06	13.14		27.29	18.73	0.39	24.97
débit volumique actuel		[m3/h]	68'000	68'000	68'000	68'000	68'000	68'000	68'000	68'000	68'000
débit volumique cond. standard	Rn	[Nm3/h]	62'420	62'420	62'420	62'420	62'420	62'420	62'420	62'420	62'420
température sortie de cheminée	Т	[℃]	34.4	34.4	34.4	34.4		34.4	34.4	34.4	34.4
flux ascensionnel	F	[m4/s3]	4.84	4.84	4.84	4.84		4.84	4.84	4.84	4.84
Ho selon diagramme1	Но	[m]	1.35	0.24	0.04	3.78		6.98	5.08	0.20	6.47
facteur pour la canalisation des											
vents	f	[-]	1.25	1.25	1.25	1.25		1.25	1.25	1.25	1.25
hauteur minimale en terrain plat											
sans obsatcle	H1	[m]	1.7	0.3	0.1	4.7		8.7	6.4	0.2	8.1
hauteur des obstacles	- 1	[m]	30	30	30	30		30	30	30	30
•	1/H1	[1/m]	17.81	98.00	567.75	6.35		3.44	4.72	121.81	3.71
facteur pour végétation	q	[-]	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
surhaussement pour végétation	Ĭ1	[m]	30.0	30.0	30.0	30.0		30.0	30.0	30.0	30.0
hauteur de la cheminée	Н	[m]	31.7	30.3	30.1	34.7		38.7	36.4	30.2	38.1

Tab. 5: Hauteur de la cheminée pour l'exploitation à l'arrêt

		OPAIR annexe 1 chiffre 7ff classe 1 débit massique > 0,1 kg/h > conc. ≤ 20 mg/m3	OPAIR annexe 1 chiffre 7ff classe 2 débit massique > 2,0 kg/h conc> conc. ≤ 100 mg/m3	OPAIR annexe 1 chiffre 7ff classe 3 débit massique > 3,0 kg/h > conc. ≦ 150 mg/m3	OPAIR annexe 1 chiffre 8ff classe K3 débit massique > 25 g/h > conc. ≤ 5 mg/m3	totale des pollantes organíques	OPAIR annexe 1 chiffre 6ff NO _x que NO ₂ et SO ₂ débit massique > 2.5 kg/h > conc. ≤ 250 mg/m3	OPAIR annexe 1 chiffre 6ff HCI débit massique > 0.3 kg/h > conc. ≤ 30 mg/m3	OPAIR annexe 2 chiffre 714 CO ≤ 50 mg/m3	OPAIR annexe 1 chiffre 4ff poussière débit massique > 0.2 kg/h > conc. ≤ 20 mg/m3
émission halle des sols	Q [kg/h]	0.062	0.033	0.020	0.043	0.158				
émission excavation, preparation	Q [kg/h]	177.110	92.993	57.393	120.906	448.402				
émission air brut	Q [kg/h]	177.172	93.026	57.413	120.949	448.560				
éfficacité oxydation thérmique	99.5%									
émission air propre	Q [kg/h]	0.806	0.423	0.261	0.550	2.040	2.834	3.051	5.084	2.034
	Q [g/h]	806	423	261	550	2'040	2'834	3'051	5'084	2'034
-	Q [mg/m3]	8	4	3	5	20	28	30	50	20
Paramètre S	S [μg/m3]	50	200	1000	10		100	100	8000	50
	Q/S [m3/μh]	16.11	2.12	0.26	55.00		28.34	30.51	0.64	40.68
débit volumique actuel	Rb [m3/h]	110'000	110'000	110'000	110'000	110'000	110'000	110'000	110'000	110'000
débit volumique cond. standard	Rn [Nm3/h]	101'689	101'689	101'689	101'689	101'689	101'689	101'689	101'689	101'689
température sortie de cheminée	T [℃]	35.6	35.6	35.6	35.6		35.6	35.6	35.6	35.6
flux ascensionnel	F [m4/s3]	8.28	8.28	8.28	8.28		8.28	8.28	8.28	8.28
Ho selon diagramme1	Ho [m]	3.44	0.63	0.11	9.63		5.52	5.87	0.23	7.47
facteur pour la canalisation des										
vents	f [-]	1.25	1.25	1.25	1.25		1.25	1.25	1.25	1.25
hauteur minimale en terrain plat										
sans obsatcle	H1 [m]	4.3	0.8	0.1	12.0		6.9	7.3	0.3	9.3
hauteur des obstacles	I [m]	30	30	30	30		30	30	30	30
	1/H1 [1/m]	6.98	38.27	221.05	2.49		4.35	4.09	104.86	3.21
facteur pour végétation	g [-]	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
surhaussement pour végétation	l1 [m]	30.0	30.0	30.0	30.0		30.0	30.0	30.0	30.0
hauteur de la cheminée	H [m]	34.3	30.8	30.1	42.0	l	36.9	37.3	30.3	39.3

Tab. 6: Hauteur de la cheminée dans les conditions particulières

Sous les conditions particulières la classe K3 est à nouveau déterminante pour la hauteur de la cheminée. En respectant la valeur limite de 5 mg/m³ la hauteur de 42 m a été calculée. Les conditions particulières ne représentent pas une exploitation normale. Du fait des quantités de polluants considérables (450 kg/h) nécessaires pour créer ces conditions, elles doivent être considérées comme improbables et seulement de courte durée.

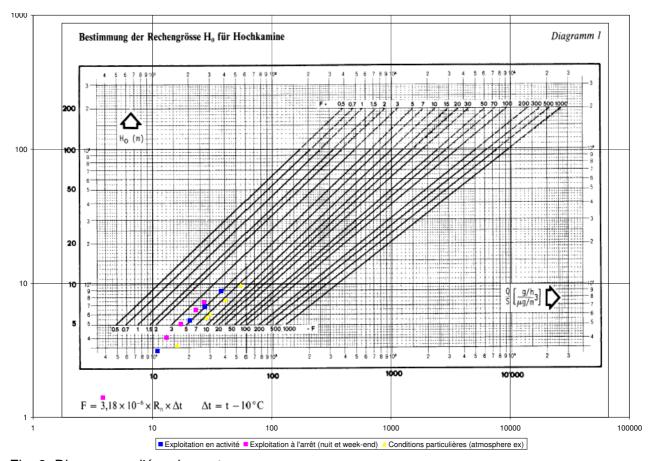


Fig. 2: Diagramme d'écoulement

Annexe 1

Modélisation PCR

balewa

Verbrennungs Rechnung RNV Tagbetrieb

Abluft				
$V_{B}^{}}$	75'000	Bm3/h		
$V_N^*_{Abluft}$	64'826	Nm3/h t	r	
m* _{Abluft}	84'532	kg/h		
m* _{Abluft tr}	83'881	kg/h		
Tabluft	20	°C		
Rel Druck		mmWS		
rel Feuchte				
Dichte Betr	O _B		1.127	kg/m3
Dichte Norr	\mathbf{o}_0		1.290	kg/Nm3
Abs Druck	-	mbar		-
P _S (T)	23.36	mbar		
p_W	11.68	mbar		
Konzentratio	n Organika		190	mg/Bm3
	Ü			mg/Nm3 tr
			123	mgC/Nm3 tr
Zus	[kg/h]		[%vol]	[%wt]
O2	19'700.66		20.93%	
N2	64'115.36		77.79%	
H2O	651.57		1.23%	
CO2	64.54		0.05%	0.08%
Wärmekapa	zität		1.0100	kJ/kgK
[cp] O2 (20°	,		0.9112	kJ/kgK
[cp] N2 (20°			1.0319	
[cp] H2O (20	,		1.8503	Ü
[cp] CO2 (20)℃) =		0.8346	kJ/kgK

Organika		m* _{Org} =		14.2	kg/h
Temperatur		T =		20	℃
Wärmekapazität		cp =		2.00	kJ/kgK
Elementaranalys	e:				
MG [k	g/kmol]	r	ni [kg/h]	[%wt]	[%w
С	12.01		7.97	55.98%	55.989
Н	1.01		0.87	6.10%	6.10
0	16.00		0.71	4.99%	4.99
N	14.01		0.00	0.02%	0.029
S	32.06		0.14	0.98%	0.989
CI	35.45		4.55	31.93%	
Σ			14.25	100.00%	100.00
Heizwert					
Hu	22.47	MJ/kg		5366.76	kcal/kg
Ho	23.80	MJ/kg		5684.73	kcal/kg
Luftbedarf					
o min		kg O2/kg	_		
l min		kg Luft/k	g		
λ		- kg Luft/k	·a –	6.21	Nm3/kg
1	0.032	ng Luitr	.y =	0.21	MIIIO/Kg
Rauchgas					
	g/kmol]				[wt%
N2	28.01		6.168		68.30
O2	32.00		0.000	0 0	0.00
CO2	44.01		2.051	3 3	22.71
H2O	18.02		0.464	3 3	5.14
SO2 HCI	64.06 36.46		0.020	3 3	0.22 ^s 3.64 ^s
m* RG	30.84		0.328 9.032	kg/kg kg RG/kg	100.00
iii na	30.04		5.032	ky na/ky	100.00

Brennsto	off	$m^*_{LPG} =$	125.32	kg/h
Propan		V* _{LPG} =	154.72	l/h
			3.71	m3/d
Dichte		ρο =	810	kg/m3
Temperat	hir	T =	20	J
Wärmeka		cp =		kJ/kgK
	•			•
Elementa				
	MG [kg/kmol]		[%wt]	-
С	12.01	103.05	82.23%	82.239
H	1.01	22.27	17.77%	17.779
0	16.00	0.00	0.00%	
N	14.01	0.00	0.00%	
S	32.06	0.01	0.00%	0.00%
CI	35.45	0.00	0.00%	
Σ		125.32	100.00%	100.00%
Heizwert				
	lu 45.68	MJ/kg F	10910.98	kcal/kn
		MJ/kg F	11837.13	
Luftbedar	f			
o min		1 . 00/		
	3.601	kg O2/kg		
l min	3.601 15.521	0 0		
		kg Luft/kg		
l min	15.521 1.16	kg Luft/kg	13.93	Nm3/kg
l min λ I	15.521 1.16 18.009	kg Luft/kg		Nm3/kg Nm3/h
l min	15.521 1.16 18.009	kg Luft/kg - kg Luft/kg	1'746	Nm3/h
I min λ I Rauchgas	15.521 1.16 18.009 MG [kg/kmol]	kg Luft/kg - kg Luft/kg [kg/kg]	1'746 [Nm3/h]	Nm3/h [vol%
I min λ I Rauchgas N2	15.521 1.16 18.009 MG [kg/kmol] 28.01	kg Luft/kg - kg Luft/kg [kg/kg] 13.831	1'746 [Nm3/h] 1'386	Nm3/h [vol% 81.7%
I min λ I Rauchgas N2 O2	15.521 1.16 18.009 MG [kg/kmol] 28.01 32.00	kg Luft/kg - kg Luft/kg [kg/kg] 13.831 0.577	1'746 [Nm3/h] 1'386 51	Nm3/h [vol% 81.7% 3.0%
I min λ I Rauchgas N2 O2 CO2	15.521 1.16 18.009 S MG [kg/kmol] 28.01 32.00 44.01	kg Luft/kg - kg Luft/kg [kg/kg] 13.831 0.577 3.013	1'746 [Nm3/h] 1'386 51 191	Nm3/h [vol% 81.79 3.09 11.39
I min λ I Rauchgas N2 O2 CO2 H2O	15.521 1.16 18.009 6 MG [kg/kmol] 28.01 32.00 44.01 18.02	kg Luft/kg - kg Luft/kg [kg/kg] 13.831 0.577 3.013 1.588	1'746 [Nm3/h] 1'386 51 191 68	Nm3/h [vol% 81.79 3.09 11.39 4.09
I min λ I manchgas N2 O2 CO2 H2O SO2	15.521 1.16 18.009 S MG [kg/kmol] 28.01 32.00 44.01 18.02 64.06	kg Luft/kg - kg Luft/kg [kg/kg] 13.831 0.577 3.013 1.588 0.000	1'746 [Nm3/h] 1'386 51 191 68 0	Nm3/h [vol% 81.79 3.09 11.39 4.09 0.09
I min λ I Rauchgas N2 O2 CO2 H2O	15.521 1.16 18.009 6 MG [kg/kmol] 28.01 32.00 44.01 18.02	kg Luft/kg - kg Luft/kg [kg/kg] 13.831 0.577 3.013 1.588	1'746 [Nm3/h] 1'386 51 191 68	Nm3/h

							iii ria
Luftbedarf:							
O2 min			477.79	kg O2/h			
O2 Brüden		19	700.66	kg O2/h			
O2 Luft min		-19	222.87	kg O2/h			
m* _{Luft min}			-82'857	kg Luft/h			
V _N * _{Luft min}			-64'091	Nm3/h			
λ			41.233	-			
Frischluft							
T_{Luft}	20.00	℃					
Baro Druck	950.00	mbar					
Rel Druck	1180	mmWS					
rel Feuchte	60.00%						
$V_{B}^{*}_{Luft}$	0	Bm3/h					
V_N^* _{Luft}	0	Nm3/h1	tr				
m* _{Luft}	0	kg/h					
m* _{Luft tr}	0	kg/h					
Dichte Betr ρ _B			1.264	kg/m3			
Dichte Norr ρ ₀			1.290	kg/Nm3	Abluft + Fris	chluft	
Abs Druck	1065.52	mbar		_			
P _S (T)	23.36	mbar			T Misch	20	℃
p_{W}	14.01	mbar					
Zus	[kg/h]		[%vol]	[%wt	[kg/h]	[%wt]	
O2	0.00		20.91%	23.29%			
N2	0.00		77.73%	75.81%	64'115.36	75.85%	
H2O	0.00		1.32%	0.82%	651.57	0.77%	
CO2	0.00		0.05%	0.08%			
					84'532	100%	
Wärmekapazitä	ät		1.0104	kJ/kgK		1.0100	kJ/kgK
[cp] O2 (20°C)	=		0.9112	kJ/kgK		0.9112	kJ/kgK
[cp] N2 (20 °C)				kJ/kgK			kJ/kgK
[cp] H2O (20°C				kJ/kgK			kJ/kgK
[cp] CO2 (20°C	S) =		0.8346	kJ/kgK		0.8346	kJ/kgK

Massenbilanz	Kontrollle
Massembnanz	Kontronie

Maddon Diran Entroller		
INPUT		
Massenstrom Brennstoffe m*B =	139.56	kg/h
Mittl. unterer Heizwert Brennstoffe =	43.31	MJ/kg
Massenstrom Luft + Brüden =	84'532	kg/h
Masse total ein	84'671.70	kg/h

OUTPUT

Rauchgas

Masse total aus	84'671.70 kg/h
Differenz	- kg/h
CO2 Bilanz CO2 in Abluft CO2 aus Verbrennung Organika CO2 aus Verbrennung Sttützbrennstoff CO2 gebildet	64.54 kg/h 29.22 kg/h 377.58 kg/h 406.80 kg/h

84'671.70 kg/h

NOx Abschätzung Brenner Spez. NO₂ (EN676) 120 mg/kWh Brennerleistung 1'591.40 kW NO₂ Brenner 113 mg/Nm3 0.191 kg/h Heissgas Vol der Ox. zone 120 m3 Verweilzeit 1.49 s

Heissgas	· ·	•
Vol der Ox. zone		120 m3
Verweilzeit		1.49 s
Eq. const Kp		3'148.3 -
NO equilib		126 ppmv
NO ₂ Heissgas	77 mg/Nm3	5.092 kg/h
Brennstoff		
Umsetzung N		100%
NO ₂ Brennstoff	0 mg/Nm3	0.009 kg/h
NO ₂ gesamt	80 mg/Nm3	5.293 kg/h

OUTPUT

Rauc	ngas:										
	[kg	/kmol]					[wt%]	[vol%]	[mg/Nm3 tr]		
N2	:	28.01	64'115.362	kg/h	51'270	Nm3/h	75.72%	77.65%			
O2	;	32.00	19'222.868	kg/h	13'452	Nm3/h	22.70%	20.37%			
CO2		44.01	471.342	kg/h	238	Nm3/h	0.56%	0.36%			
SO2		64.06	0.289	kg/h	0	Nm3/h	0.00%	0.00%	4.45		
HCI	;	36.46	4.678	kg/h	3	Nm3/h	0.01%	0.00%	72.01		
H2O		18.02	857.159	kg/h	1'066	Nm3/h	1.01%	1.61%			
М	ol masse		Masse RG		Volumer	n RG			Wasserge	halt / Dicht	e
2	8.27 kg/km	ol	84'671.70	kg RG/h	66'029	Nm3/h	100.0%	100.0%	X=	10.227	g H ₂ O/kg Luft
			83'814.54	kg RG/h tr	64'963	Nm3/h tr			po =	1.282	kg/Nm3

							NO ₂ gesamit	
<u>Temperaturen</u>		Rel Druck	Betriebsvolumen RG	Dichte RG				
T _{A ein}	20 °C (Temp Abluft ein)	-33 mmWS	75'842 Bm3/h	1.116	kg/m3			
T_W	791.5 ℃ (Temp nach Vorwärmung)	-40 mmWS	275'751 Bm3/h	0.307	kg/m3	qv1	0 MJ/h	
T_V	850.0 ℃ (Temp in Verbrennung)	-33 mmWS	290'685 Bm3/h	0.291	kg/m3	qv2	0 MJ/h	0.00%
T_{RG}	90.0 ℃ (Temp RG aus)	-50 mmWS	94'115 Bm3/h	0.900	kg/m3	qv3	0 MJ/h	
T_U	20 °C (Temp Umgebung)							

 $A diabate \ Verbrennungs-Temperatur \qquad \ \ H'(T_{Luft},\ T_{Feed}) - H''(T_{ad}) = 0$

T_{ad} = 90 ℃

Wärmekapazitä	it T _w	792 ℃	Wärmekapazität T	<u>.</u>	850 ℃	Wärmekapazitä:	t T _{RG}	90 ℃	Wärmekapazität T _L	1	20 ℃	Wärmekapazität	T _{ad}	90 ℃
[cp] Luft =	1.0691	kJ/kgK	[cp] Luft =	1.0753	kJ/kgK	[cp] Luft =	1.0056	kJ/kgK	[cp] Luft =	1.0032	kJ/kgK	[cp] Luft =	1.0056	kJ/kgK
[cp] N2 =	1.0944	kJ/kgK	[cp] N2 =	1.0995	kJ/kgK	[cp] N2 =	1.0370	kJ/kgK	[cp] N2 =	1.0319	kJ/kgK	[cp] N2 =	1.0370	kJ/kgK
[cp] O2 =	1.0131	kJ/kgK	[cp] O2 =	1.0190	kJ/kgK	[cp] O2 =	0.9225	kJ/kgK	[cp] O2 =	0.9112	kJ/kgK	[cp] O2 =	0.9225	kJ/kgK
[cp] CO2 =	1.0863	kJ/kgK	[cp] CO2 =	1.0990	kJ/kgK	[cp] CO2 =	0.8648	kJ/kgK	[cp] CO2 =	0.8346	kJ/kgK	[cp] CO2 =	0.8648	kJ/kgK
[cp] H2O =	2.0709	kJ/kgK	[cp] H2O =	2.0893	kJ/kgK	[cp] H2O =	1.8679	kJ/kgK	[cp] H2O =	1.8503	kJ/kgK	[cp] H2O =	1.8679	kJ/kgK
[cp] SO2 =	0.7676	kJ/kgK	[cp] SO2 =	0.7748	kJ/kgK	[cp] SO2 =	0.6356	kJ/kgK	[cp] SO2 =	0.6170	kJ/kgK	[cp] SO2 =	0.6356	kJ/kgK
[cp] HCl =	0.4746	kJ/kgK	[cp] HCl =	0.4762	kJ/kgK	[cp] HCl =	0.4553	kJ/kgK	[cp] HCl =	0.4534	kJ/kgK	[cp] HCl =	0.4553	kJ/kgK
[cp] AL =	1.0830	kJ/kgK	[cp] RG =	1.0912	kJ/kgK	[cp] RG =	1.0184	kJ/kgK	[cp] RG =	1.0117	kJ/kgK	[cp] RG =	1.0184	kJ/kgK

Wärmebilanz:					
Input:	$H'(T_{Luft}, T_{Feed}) = \Sigma \{m^*_{Feed i}(Hu_{Feed i} + cp_{Feed i}T_{Feed i})\}$	+ m* _{Luft} [cp] _{Luft} T _{Luft} -	+ m* _{Abluft} [c	p] _{Abluft} T _{Abluft}	
Feuerungswärmeleistu	ng (FWL)	H' =	7'757	MJ/h	2.155 MW
Abluft ein	$H'_{AL}(T_{A \text{ ein}}) = m^*_{AL}[cp]_{AL}T_{A \text{ ein}} + m^*_{Org}cpT_{A \text{ ein}}$	$H'_{AL}(T_{A ein}) =$	1'708	MJ/h	0.474 MW
Abluft vorgewärmt	$H'_{AL}(T_W) = m^*_{AL}[cp]_{AL}T_W + m^*_{Org}cpT_W$	$H'_{AL}(T_W) =$	72'486	MJ/h	20.135 MW
Leistung WT	$Q_{WT} = H'_{AL}(T_W) - H'_{AL}(T_{A \text{ ein}})$	$Q^{+}_{WT} =$	70'778	MJ/h	19.661 MW
Rauchgas Verbrennun	$g H''_{RG}(T_V) = m^*_{RG} [cp]_{RG} T_V$	$H_{RG}(T_V) =$	78'535	MJ/h	21.815 MW
Brennerleistung	$Q_{Brenner} = H_{RG}^{*}(T_{V}) - H_{AL}^{*}(T_{W}) - m_{org}^{*} Hu_{org}$	Q _{Brenner} =	5'729	MJ/h	1.591 MW
Leistung WT	$Q_{WT} = H"_{RG}(T_V) - H"_{RG}(T_{RG})$	$Q_{WT} =$	70'778	MJ/h	19.661 MW
Rauchgas aus	$H"_{RG}(T_{RG}) = m^*_{RG} [cp]_{RG} T_{RG}$	$H''_{RG}(T_{RG}) =$	7'757	MJ/h	2.155 MW

- 1	H'1	1'708	$MJ/h = H'_{AL}(T_{A \text{ ein}})$		
- 1	H'2	72'486	$MJ/h = H'_{AL}(T_W)$	72'486	MJ/h
- 1	H"2	78'535	$MJ/h = H"_{RG}(T_V)$	78'535	MJ/h
- 1	H"3	7'757	$MJ/h = H''_{RG}(T_{RG})$	7'757	MJ/h
- 1	H"u	1'713	MJ/h		
($Q_{WT} = f(\eta)$			70'778	MJ/h
(Q _{Brenner} =	5'729	MJ/h	1.591	MW
(Q _{Organika} =	326	MJ/h	0.090	MW
1	η _{WT} =	92.13%			

Poingge om TNV Augi			
Reingas am TNV Aust	<u>iriu</u>		
Temperatur	T	89.96	°C
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_{r}	-5745	Pa
Abs Druck	P_a	892.55	mbar
Mass strom feucht	m* _f	84'672	kg/h
Mass strom trocken	m* _{tr}	83'815	kg/h
Norm Vol feucht	Q _{Nf}	65'980	Nm3/h
Norm Vol trocken	Q _{Nt}	64'647	Nm3/h tr
Betriebs Vol	Q _B	99'570	m3/h
rel Feuchte	φ	2.06%	
Sät Druck	$P_S(T)$	699.73	mbar
Part Druck	p_W	14.41	mbar
Wassergehalt	X	10.227	g_{H2O}/kg_{Ltr}
Taupunkt	T_Tau	12.4	°C
Kühlgrenztemp	T_{KG}	23.6	°C
Massenstrom	m _{O2}	19'222.87	kg/h
	m_{N2}	64'115.36	kg/h
	m_{H2O}	857.16	kg/h
	m_{CO2}	471.34	kg/h
	m_{SO2}	0.29	kg/h
	m_{HCI}	4.68	kg/h
Massenanteil	W _{O2}	22.70%	wt
	W_{N2}	75.72%	wt
	W_{H2O}	1.01%	wt
	W _{CO2}	0.56%	wt
	W_{SO2}	0.00%	wt
	\mathbf{w}_{HCI}	0.01%	wt
Molanteil	y _{O2}	20.38%	mol
	y _{N2}	77.64%	mol
	y _{H2O}	1.61%	mol
	y _{CO2}	0.36%	mol
	y _{SO2}	0.00%	mol
	Y HCI	0.00%	mol
Dichte	ρ_{B}	0.850	kg/m3
Dichte Normzustand	$ ho_0$	1.283	kg/Nm3
Dichte Norm trocken	ρ_{0tr}	1.291	kg/m3
Wärmekapazität		1.0184	kJ/kgK
[cp] O2 (90		0.9225	kJ/kgK
[cp] N2 (90 [cp] H2O (1.0370 1.8679	kJ/kgK
[cp] H2O (0.8648	kJ/kgK kJ/kgK
[cp] SO2 (,	0.6356	kJ/kgK
[cp] HCl (9		0.4553	kJ/kgK
Spez. Enth	h _{L tr}	118.12	kJ/kg _{L tr}
Enthalpie	H_{tot}	2'750.02	kW

Tagbetrieb			
Reingas nach Einsprit	zkühler (C	Quench)	
Tomporatur	Т	89.96	°C
Temperatur Umgeb Druck	P ₀	950.00	_
Rel Druck	P _r	-5745	
Abs Druck	P _a	892.55	
Mass strom feucht	m* _f	84'672	
Mass strom trocken	m* _{tr}	83'815	ŭ
Norm Vol feucht	Q _{Nif}		Nm3/h
Norm Vol trocken	Q _{Nt}		Nm3/h tr
Betriebs Vol	Q _B	99'570	
	6		
rel Feuchte	φ	2.06%	
Sät Druck	$P_{S}(T)$	699.73	mbar
Part Druck	p_W	14.41	mbar
Wassergehalt	Χ	10.227	$g_{H2O}/kg_{L\ tr}$
Taupunkt	T_Tau	12.4	℃
Kühlgrenztemp	T_{KG}	23.6	℃
Massenstrom	m	10'000 07	ka/b
Massenstrom	m _{O2}	19'222.87	•
	m _{N2}	64'115.36	ŭ
	m _{H2O}	857.16	ŭ
	m _{CO2}	471.34	ŭ
	m _{SO2}		kg/h
	m _{HCI}	4.00	kg/h
Massenanteil	W _{O2}	22.70%	wt
	W_{N2}	75.72%	wt
	W_{H2O}	1.01%	wt
	W _{CO2}	0.56%	wt
	W _{SO2}	0.00%	wt
	\mathbf{w}_{HCI}	0.01%	wt
Molanteil	y _{O2}	20.38%	
	y _{N2}	77.64%	-
	y _{H2O}	1.61%	-
	y co2	0.36%	-
	y _{SO2}	0.00%	-
	Y HCI	0.00%	mol
Dichte	ρ_{B}	0.850	kg/m3
Dichte Normzustand	ρ_0		kg/Nm3
Dichte Norm trocken	$\rho_{0 \text{ tr}}$		kg/m3
Wärmekapazität	1° U II	1.0184	•
[cp] O2 (90	,	0.9225	kJ/kgK
[cp] N2 (90		1.0370	kJ/kgK
[cp] H2O (,	1.8679	
[cp] CO2 ([cp] SO2 (0.8648 0.6356	
[cp] HCl (9		0.4553	U
Spez. Enth	h _{L tr}		kJ/kg _{L tr}
Enthalpie	H _{tot}	2'750.02	κW

Reingas nach Venti			
Temperatur	Т	100.31	℃
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_{r}	755	Pa
Abs Druck	P_a	957.55	mbar
Mass strom feucht	m^{\star}_{f}	84'672	kg/h
Mass strom trocken	${\sf m^*_{tr}}$	83'815	kg/h
Norm Vol feucht	Q_{Nf}	65'980	Nm3/h
Norm Vol trocken	Q_{Nt}	64'647	Nm3/h tr
Betriebs Vol	Q_B	95'457	m3/h
rel Feuchte	φ	1.51%	
Sät Druck	$P_{S}(T)$	1024.09	mbar
Part Druck	p_W		mbar
Wassergehalt	Χ	10.227	g_{H2O}/kg_L
Taupunkt	T_Tau	13.5	℃
Kühlgrenztemp	T_{KG}	34.9	℃
Massenstrom	m _{O2}	19'222.87	kg/h
	m_{N2}	64'115.36	kg/h
	m_{H2O}	857.16	kg/h
	m_{CO2}	471.34	kg/h
	m_{SO2}	0.29	kg/h
	m_{HCI}	4.68	kg/h
Massenanteil	W _{O2}	22.70%	wt
	W_{N2}	75.72%	wt
	W_{H2O}	1.01%	wt
	W _{CO2}	0.56%	wt
	W_{SO2}	0.00%	wt
	\mathbf{w}_{HCI}	0.01%	wt
Molanteil	y _{O2}	20.38%	mol
	y _{N2}	77.64%	mol
	y _{H2O}	1.61%	mol
	y _{CO2}	0.36%	mol
	y _{SO2}	0.00%	mol
	Унсі	0.00%	mol
Dichte	ρ_{B}	0.887	kg/m3
Dichte Normzustand	ρ_0	1.283	kg/Nm3
Dichte Norm trocken	$\rho_{0\;tr}$	1.291	kg/m3
Wärmekapazität		1.0194	
[cp] O2 (10)		0.9242	
[cp] N2 (10 [cp] H2O (1		1.0378 1.8705	kJ/kgK kJ/kgK
[cp] CO2 (1	,	0.8691	kJ/kgK
[cp] SO2 (1	,	0.6382	-
[cp] HCl (10	= (0°00)	0.4556	•
Spez. Enth	h _{L tr}		kJ/kg _{L tr}
Enthalpie	H_{tot}	3'000.31	kW

Reingas nach Wäsch	<u>ier</u>		
Temperatur	T	34.36	°C
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_r	20.0	Pa
Abs Druck	P_a	950.20	mbar
Mass strom feucht	m* _f	86'978	kg/h
Mass strom trocken	m* _{tr}	83'815	kg/h
Norm Vol feucht	Q_{Nf}	68'851	Nm3/h
Norm Vol trocken	Q_{Nt}	64'647	Nm3/h tr
Betriebs Vol	Q_B	82'656	m3/h
rel Feuchte	φ	100.00%	
Sät Druck	P _S (T)	54.24	
Part Druck	p_W	54.24	mbar
Wassergehalt	X	37.742	g_{H2O}/kg_{Ltr}
Taupunkt	T_Tau	34.4	°C
Kühlgrenztemp	T_{KG}	34.4	°C
Massenstrom	m _{O2}	19'222.87	kg/h
	m_{N2}	64'115.36	kg/h
	m_{H2O}	3'163.35	kg/h
	m_{CO2}	471.34	kg/h
	m_{SO2}	0.29	kg/h
	m _{HCI}	4.68	kg/h
Massenanteil	W _{O2}	22.10%	wt
	W_{N2}	73.71%	wt
	W_{H2O}	3.64%	wt
	W _{CO2}	0.54%	wt
	W _{SO2}	0.00%	wt
	\mathbf{w}_{HCI}	0.01%	wt
Molanteil	y _{O2}	19.53%	mol
	y _{N2}	74.41%	mol
	y _{H2O}	5.71%	mol
	y co2	0.35%	mol
	y so2	0.00%	mol
	Унсі	0.00%	mol
Dichte	$ ho_{B}$	1.052	kg/m3
Dichte Normzustand	$ ho_0$	1.263	kg/Nm3
Dichte Norm trocken	$\rho_{0 \text{ tr}}$	1.291	kg/m3
Wärmekapazität		1.0354	-
[cp] O2 (3		0.9136	
[cp] N2 (3	,	1.0330	•
[cp] H2O [cp] CO2		1.8538 0.8409	-
[cp] CO2 [cp] SO2		0.6209	
[cp] HCl (` '	0.4538	
Spez. Enth	h _{L tr}	131.27	kJ/kg _{L tr}
Enthalpie	H _{tot}	3'056.32	1.147

Einspritzkühler		
Einspritzwasser EW	m^*_{EW}	0.00 kg/h
Temperatur	T_{EW}	20 ℃
Wärmekapazität	cp _{fl}	4.19 kJ/kgK
Enthalpie EW	H_{EW}	0.00 kW

Berechnung Verdichtu	ıng	
Eintrittsdruck	poα:	892.6 mbar
Druckerhöhung	∆p :	65.0 mbar
Wirkungsgrad	ην:	70% -
$\mathbf{m}^* = QB^*\rho$		84'672 kg/h
$\mathbf{poω} = \mathbf{poα} + \Delta \mathbf{p}$		957.6 mbar
$\mathbf{Rs} = po\alpha/\rho To\alpha$		0.2891 kJ/kgK
cv = cp - Rs		0.7294 kJ/kgK
$\kappa = cp/cv$		1.3963 -
$\mathbf{P} = \mathbf{m}^* \operatorname{cpTo\alpha}[(\mathbf{po\omega/pe})]$	οα)^((κ-	1)/κ)-1]1/ηv
erf. Leistung	Р	250.29 kW
Toω =Toα+P/m*cp	Τοω	100.4 ℃

Quench		
Verdampfung		2'306.20 kg/h
Abschlämmung		100 kg/h
Temperatur	T_{QW}	0.00 ℃
Enthalpie QW	H_{QW}	0.00 kW
Ergänzung Quench	m^*_{QW}	2'406.20 kg/h
Temperatur	T_{QW}	20 ℃
Enthalpie QW	H_{QW}	56.01 kW

balewa

Verbrennungs Rechnung RNV Nachtbetrieb

Abluft					
V _B * _{Abluft}	68'000	Bm3/h			
$V_N^*_{Abluft}$	58'776	Nm3/h tr			
m* _{Abluft}	76'642	kg/h			
m* _{Abluft tr}	76'052	kg/h			
T _{Abluft}	20	℃			
Rel Druck		mmWS			
rel Feuchte	50.00%				
Dichte Betr ρ _B			1.127	kg/m3	
Dichte Norr ρ ₀			1.290	kg/Nm3	
Abs Druck	950.00	mbar			
P _S (T)	23.36	mbar			
p _W	11.68	mbar			
Konzentration (Organika		75	mg/Bm3	
				mg/Nm3 tr	
			48	mgC/Nm3 tr	
Zus	[kg/h]		[%vol]	[%wt]	
	7'861.93			23.31%	
1	8'131.26		77.79%		
H2O	590.76		1.23%		
CO2	58.52		0.05%	0.08%	
Wärmekapazita	ät		1.0100	kJ/kgK	
[cp] O2 (20°C)	=	(0.9112	kJ/kgK	
[cp] N2 (20 °C)			1.0319		
[cp] H2O (20 ℃	,		1.8503		
[cp] CO2 (20°C	2) =		0.8346	kJ/kgK	

Organika		m* _{Org} =	=	5.1	kg/h
Temperatur		T =		20	℃
Wärmekapaz	ität	cp =		2.00	kJ/kgK
Elementarana					
M	3 [kg/kmol]		mi [kg/h]	[%wt]	[%w
С	12.01		2.84	55.98%	55.98%
H	1.01		0.31	6.10%	6.10%
0	16.00		0.25	4.99%	4.99%
N	14.01		0.00	0.02%	0.02%
S	32.06		0.05	0.98%	0.98%
CI	35.45		1.62	31.93%	31.93%
Σ			5.07	100.00%	100.00%
Heizwert					
Hu	22.47	3		5366.76	kcal/kg
Но	23.80	MJ/kg		5684.73	kcal/kg
Luftbedarf					
o min		kg O2/			
l min		kg Luft	/kg		
λ I	8.032	- kg Luft	/kg =	6.21	Nm3/kg
Rauchgas					
	G [kg/kmol]				[wt%
N2	28.01		6.168	kg/kg	68.30%
02	32.00		0.000	3 3	0.00%
CO2	44.01		2.051	3 3	22.719
H2O	18.02		0.464		5.149
SO2	64.06		0.020	3 3	0.229
HCI	36.46		0.328	kg/kg	3.649

Brennstoff		m* _{LPG} =	117.49	kg/h
Propan		V* _{LPG} =	145.04	l/h
-			3.48	m3/d
Dichte		ρο =	810	kg/m3
Temperatur		T =		℃
Wärmekapazitä	t	cp =		kJ/kgK
Elementaranalys	se:			
MG [kg/kmol]	mi [kg/h]	[%wt]	[wt
С	12.01	96.61	82.23%	82.23%
Н	1.01	20.87	17.77%	17.779
0	16.00	0.00	0.00%	
N	14.01	0.00	0.00%	
S	32.06	0.00	0.00%	0.00%
CI	35.45	0.00	0.00%	
Σ		117.49	100.00%	100.00%
Heizwert				
Hu	45.68	MJ/kg F	10910.98	kcal/kg
Ho	49.56	MJ/kg F	11837.13	kcal/kg
Luftbedarf				
o min	3.601	3 - 3		
l min λ	15.521 1.16	kg Luft/kg		
۸ I		kg Luft/kg	13.03	Nm3/kg
•	10.000	ng Luiting		Nm3/h
			163/	
Rauchgas			1637	
Rauchgas MG [kg/kmol]	[kg/kg]	[Nm3/h]	
	kg/kmol] 28.01	[kg/kg] 13.831		[vol%
MG [N2 O2	28.01 32.00	13.831 0.577	[Nm3/h] 1'299 47	[vol% 81.7% 3.0%
MG [N2 O2 CO2	28.01 32.00 44.01	13.831 0.577 3.013	[Nm3/h] 1'299 47 179	[vol% 81.79 3.09 11.39
MG [N2 O2 CO2 H2O	28.01 32.00 44.01 18.02	13.831 0.577 3.013 1.588	[Nm3/h] 1'299 47 179 64	[vol% 81.79 3.09 11.39 4.09
MG [N2 O2 CO2 H2O SO2	28.01 32.00 44.01 18.02 64.06	13.831 0.577 3.013 1.588 0.000	[Nm3/h] 1'299 47 179 64	[vol% 81.79 3.09 11.39 4.09
MG [N2 O2 CO2 H2O	28.01 32.00 44.01 18.02	13.831 0.577 3.013 1.588	[Nm3/h] 1'299 47 179 64	[vol% 81.7% 3.0%

								m^ RG
Luftbedarf:								
O2 min			432.49	kg O2/h				
O2 Brüden		17	7'861.93	kg O2/h				
O2 Luft min		-17		kg O2/h				
m* _{Luft min}			-75'127	kg Luft/h				
V _N * _{Luft min}			-58'112	Nm3/h				
λ			41.300	-				
Frischluft								
T _{Luft}	20.00	℃						
Baro Druck	950.00							
Rel Druck		mmWS	;					
rel Feuchte	60.00%	_						
V _B * _{Luft}		Bm3/h						
V_N^* _{Luft}	0	Nm3/h	tr					
m* _{Luft}	0	kg/h						
m* _{Luft tr}	0	kg/h						
Dichte Betr ρ_B			1.264	kg/m3				
Dichte Norr ρ ₀			1.290	kg/Nm3		Abluft + Fris	chluft	
Abs Druck	1065.52	mbar						
P _S (T)	23.36	mbar				T Misch	20	°C
p _w	14.01	mbar						
Zus	[kg/h]		[%vol]	[%\	wt1	[kg/h]	[%wt]	
O2	0.00		20.91%	23.29	%	17'861.93	23.31%	
N2	0.00		77.73%	75.81	%	58'131.26	75.85%	
H2O	0.00		1.32%	0.82	2%	590.76	0.77%	
CO2	0.00		0.05%	0.08	3%		0.08%	
						76'642	100%	
Wärmekapazitä	5+		1.0104	kJ/kgK			1 0100	kJ/kgK
[cp] O2 (20 °C)	al =		0.9112					kJ/kgK
[cp] N2 (20 °C)				kJ/kgK				kJ/kgK
[cp] H2O (20 °C				kJ/kgK				kJ/kgK
[cp] CO2 (20°C				kJ/kgK			0.8346	

[cp] CO2 (
OUTPUT

Rauchgas	s:									
	[kg/kmol]					[wt%]	[vol%]	[mg/Nm3 tr]		
N2	28.01	58'131.260	kg/h	46'485	Nm3/h	75.73%	77.65%			
O2	32.00	17'429.443	kg/h	12'197	Nm3/h	22.70%	20.37%			
CO2	44.01	422.895	kg/h	214	Nm3/h	0.55%	0.36%			
SO2	64.06	0.109	kg/h	0	Nm3/h	0.00%	0.00%	1.85		
HCI	36.46	1.665	kg/h	1	Nm3/h	0.00%	0.00%	28.27		
H2O	18.02	779.651	kg/h	970	Nm3/h	1.02%	1.62%			
Mol m	asse	Masse RG		Volume	n RG			Wasserge	halt / Dicht	е
28.26	kg/kmol	76'765.02	kg RG/h	59'866	Nm3/h	100.0%	100.0%	X=	10.261	g H ₂ O/kg Luft
		75'985.37	kg RG/h tr	58'896	Nm3/h tr			ρο =	1.282	kg/Nm3

<u>Temperaturen</u>		Rel Druck	Betriebsvolumen RG	Dichte RG	
T _{A ein}	20 °C (Temp Abluft ein)	-33 mmWS	68'763 Bm3/h	1.116 kg/m3	
T_W	791.7 ℃ (Temp nach Vorwärmung)	-40 mmWS	250'044 Bm3/h	0.307 kg/m3	qv1
T_V	850.0 ℃ (Temp in Verbrennung)	-33 mmWS	263'553 Bm3/h	0.291 kg/m3	qv2
T_{RG}	90.0 ℃ (Temp RG aus)	-50 mmWS	85'331 Bm3/h	0.900 kg/m3	qv3
T_U	20 °C (Temp Umgebung)				

Maddenotion Diciniotone		122.00	119/11
Mittl. unterer Heizwert Bre	nnstoffe =	44.72	MJ/kg
Massenstrom Luft + Brüde	n =	76'642	kg/h
Masse total ein		76'765.02	kg/h
OUTPUT			
OUTFOI			
Rauchgas		76'765.02	kg/h
Masse total aus		76'765.02	ka/h
Differenz		-	kg/h
CO2 Bilanz			
CO2 in Abluft		58.52	
CO2 aus Verbrennung Org		10.40	0
CO2 aus Verbrennung Sttü	itzbrennstoff	353.98	0
CO2 gebildet		364.38	kg/h
NOx Abschätzung			
Brenner Spez. NO ₂ (EN67	(6)	120	mg/kWh
Brennerleistung	-,	1'491.92	•
NO ₂ Brenner	113 mg/Nm3	0.179	
Heissgas	r ro mg/ramo	0.170	Ng/11
Vol der Ox. zone		120	m3
Verweilzeit		1.64	
Eq. const Kp		3'148.3	-
NO equilib			ppmv
Umsetzung equilib	50%		(Verweilzeitbe
NO ₂ Heissgas	43 mg/Nm3	2.546	*
Brennstoff	Ç		-
Umsetzung N		100%	
NO ₂ Brennstoff	0 mg/Nm3	0.003	kg/h
-	3		0

46 mg/Nm3

0.00%

2.729 kg/h

122.56 kg/h

Massenbilanz Kontrollle

Massenstrom Brennstoffe m*B =

INPUT

 NO_2 gesamt

0 MJ/h 0 MJ/h

0 MJ/h

Wärmekapaz	<u>ität T_w</u> 792 ℃	<u>Wärmekapazität</u>	<u>: Tv</u> 850 ℃	Wärmekapazi	ität T _{RG}	90 ℃	Wärmekapazität T		20 ℃	Wärmekapazitä	t T _{ad}	90 ℃
[cp] Luft =	1.0691 kJ/kgK	[cp] Luft =	1.0753 kJ/kgK	[cp] Luft =	1.0056	kJ/kgK	[cp] Luft =	1.0032	kJ/kgK	[cp] Luft =	1.0056	kJ/kgK
[cp] N2 =	1.0944 kJ/kgK	[cp] N2 =	1.0995 kJ/kgK	[cp] N2 =	1.0370	kJ/kgK	[cp] N2 =	1.0319	kJ/kgK	[cp] N2 =	1.0370	kJ/kgK
[cp] O2 =	1.0131 kJ/kgK	[cp] O2 =	1.0190 kJ/kgK	[cp] O2 =	0.9225	kJ/kgK	[cp] O2 =	0.9112	kJ/kgK	[cp] O2 =	0.9225	kJ/kgK
[cp] CO2 =	1.0863 kJ/kgK	[cp] CO2 =	1.0990 kJ/kgK	[cp] CO2 =	0.8648	kJ/kgK	[cp] CO2 =	0.8346	kJ/kgK	[cp] CO2 =	0.8648	kJ/kgK
[cp] H2O =	2.0710 kJ/kgK	[cp] H2O =	2.0893 kJ/kgK	[cp] H2O =	1.8679	kJ/kgK	[cp] H2O =	1.8503	kJ/kgK	[cp] H2O =	1.8679	kJ/kgK
[cp] SO2 =	0.7676 kJ/kgK	[cp] SO2 =	0.7748 kJ/kgK	[cp] SO2 =	0.6356	kJ/kgK	[cp] SO2 =	0.6170	kJ/kgK	[cp] SO2 =	0.6356	kJ/kgK
[cp] HCl =	0.4746 kJ/kgK	[cp] HCl =	0.4762 kJ/kgK	[cp] HCl =	0.4553	kJ/kgK	[cp] HCl =	0.4534	kJ/kgK	[cp] HCl =	0.4553	kJ/kgK
[cp] AL =	1.0830 kJ/kgK	[cp] RG =	1.0913 kJ/kg/	[cp] RG =	1.0185	kJ/kgK	[cp] RG =	1.0117	kJ/kgK	[cp] RG =	1.0185	kJ/kgK

Wärmebilanz:					
Input:	$H'(T_{Luft}, T_{Feed}) = \Sigma \{m^*_{Feed i}(Hu_{Feed i} + cp_{Feed i}T_{Feed i})\}$	+ m^*_{Luft} [cp] _{Luft} T_{Luft}	+ m* _{Abluft} [c	p] _{Abluft} T _{Abluft}	
Feuerungswärmeleist	ung (FWL)	H' =	7'033	MJ/h	1.954 MW
Abluft ein	$H'_{AL}(T_{A \text{ ein}}) = m^*_{AL}[cp]_{AL}T_{A \text{ ein}} + m^*_{Org}cpT_{A \text{ ein}}$	$H'_{AL}(T_{A \text{ ein}}) =$	1'548	MJ/h	0.430 MW
Abluft vorgewärmt	$H'_{AL}(T_W) = m^*_{AL}[cp]_{AL}T_W + m^*_{Org}cpT_W$	$H'_{AL}(T_W) =$	65'720	MJ/h	18.256 MW
Leistung WT	$Q_{WT} = H'_{AL}(T_W) - H'_{AL}(T_{A \text{ ein}})$	$Q^+_{WT} =$	64'172	MJ/h	17.825 MW
Rauchgas Verbrennur	$ng H''_{RG}(T_V) = m^*_{RG}[cp]_{RG}T_V$	$H_{RG}(T_V) =$	71'205	MJ/h	19.779 MW
Brennerleistung	$Q_{Brenner} = H''_{RG}(T_V) - H''_{AL}(T_W) - m^*_{org} Hu_{org}$	Q _{Brenner} =	5'371	MJ/h	1.492 MW
Leistung WT	$Q_{WT} = H''_{RG}(T_V) - H''_{RG}(T_{RG})$	$Q_{WT} =$	64'172	MJ/h	17.825 MW
Rauchgas aus	$H''_{RG}(T_{RG}) = m^*_{RG}[cp]_{RG}T_{RG}$	$H''_{RG}(T_{RG}) =$	7'033	MJ/h	1.954 MW

H'1	1'548	$MJ/h = H'_{AL}(T_{A ein})$		
H'2	65'720	$MJ/h = H'_{AL}(T_W)$	65'720	MJ/h
H"2	71'205	$MJ/h = H"_{RG}(T_V)$	71'205	MJ/h
H"3	7'033	$MJ/h = H"_{RG}(T_{RG})$	7'033	MJ/h
H"u	1'553	MJ/h		
$Q_{WT} = f(\eta)$			64'172	MJ/h
Q _{Brenner} =	5'371	MJ/h	1.492	MW
Q _{Organika} =	116	MJ/h	0.032	MW
$\eta_{WT} =$	92.13%			

Verbrennungs Rechr			
Reingas am TNV Aust	<u>iritt</u>		
Temperatur	Т	89.96	°C
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_{r}	-5745	Pa
Abs Druck	P_a	892.55	mbar
Mass strom feucht	m_{f}^{\star}	76'765	kg/h
Mass strom trocken	m^{\star}_{tr}	75'985	kg/h
Norm Vol feucht	Q_{Nf}	59'822	Nm3/h
Norm Vol trocken	Q_{Nt}	58'610	Nm3/h tr
Betriebs Vol	Q _B	90'276	m3/h
rel Feuchte	φ	2.07%	
Sät Druck	$P_{S}(T)$	699.72	mbar
Part Druck	p_{W}	14.45	mbar
Wassergehalt	Χ	10.261	g_{H2O}/kg_{Ltr}
Taupunkt	T_Tau	12.5	°C
Kühlgrenztemp	T_{KG}	23.6	℃
Massenstrom	m _{O2}	17'429.44	kg/h
	m_{N2}	58'131.26	kg/h
	m_{H2O}	779.65	kg/h
	m_{CO2}	422.90	kg/h
	m_{SO2}	0.11	kg/h
	m _{HCl}	1.66	kg/h
Massenanteil	W _{O2}	22.70%	wt
	W_{N2}	75.73%	wt
	W_{H2O}	1.02%	wt
	W _{CO2}	0.55%	wt
	W_{SO2}	0.00%	wt
	W _{HCI}	0.00%	wt
Molanteil	y _{O2}	20.38%	mol
	y _{N2}	77.64%	mol
	y _{H2O}	1.62%	mol
	y _{CO2}	0.36%	mol
	y _{SO2}	0.00%	mol
	y _{HCI}	0.00%	mol
Dichte	ρ_{B}	0.850	kg/m3
Dichte Normzustand	ρ_0	1.283	kg/Nm3
Dichte Norm trocken	ρ_{0tr}	1.291	kg/m3
Wärmekapazität		1.0185	kJ/kgK
[cp] O2 (90		0.9225	kJ/kgK
[cp] N2 (90 [cp] H2O (1.0370 1.8679	kJ/kgK kJ/kgK
[cp] H2O ([cp] CO2 (0.8648	kJ/kgK
[cp] SO2 (0.6356	-
[cp] HCl (9		0.4553	kJ/kgK
Spez. Enth	h _{L tr}	118.21	kJ/kg _{L tr}
Enthalpie	H _{tot}	2'495.08	kW
.			

Nachtbetrieb			
Reingas nach Einsprit	zkühler ((Quench)	
Temperatur	Т	89.96	°C
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_r	-5745	Pa
Abs Druck	P_a	892.55	mbar
Mass strom feucht	m^*_f	76'765	kg/h
Mass strom trocken	m^{\star}_{tr}	75'985	kg/h
Norm Vol feucht	Q_{Nf}	59'822	Nm3/h
Norm Vol trocken	Q_{Nt}	58'610	Nm3/h tr
Betriebs Vol	Q_B	90'276	m3/h
rel Feuchte	φ	2.07%	
Sät Druck	P _S (T)	699.72	
Part Druck	p_W	14.45	mbar
Wassergehalt	X		g _{H2O} /kg _{L tr}
Taupunkt	T _{Tau}	12.5	-
Kühlgrenztemp	T_{KG}	23.6	℃
Massenstrom	m_{O2}	17'429.44	kg/h
	m_{N2}	58'131.26	kg/h
	m_{H2O}	779.65	kg/h
	m_{CO2}	422.90	kg/h
	m_{SO2}	0.11	kg/h
	m_{HCI}	1.66	kg/h
Massenanteil	W _{O2}	22.70%	wt
	\mathbf{w}_{N2}	75.73%	wt
	\mathbf{w}_{H2O}	1.02%	wt
	\mathbf{w}_{CO2}	0.55%	wt
	$\mathbf{w}_{\mathrm{SO2}}$	0.00%	wt
	\mathbf{w}_{HCI}	0.00%	wt
Molanteil	y _{O2}	20.38%	mol
	y _{N2}	77.64%	mol
	y _{H2O}	1.62%	mol
	y _{CO2}	0.36%	mol
	y _{SO2}	0.00%	mol
	y _{HCI}	0.00%	mol
Dichte	ρ_{B}	0.850	kg/m3
Dichte Normzustand	$\rho_0 \\$	1.283	kg/Nm3
Dichte Norm trocken	$\rho_{0 \; tr}$	1.291	kg/m3
Wärmekapazität) (C)	1.0185	
[cp] O2 (90 [cp] N2 (90		0.9225 1.0370	-
[cp] H2O (1.8679	•
[cp] CO2 (0.8648	kJ/kgK
[cp] SO2 (,	0.6356	
[cp] HCl (9	υ°C) =	0.4553	kJ/kgK
Spez. Enth	h _{L tr}		kJ/kg _{L tr}
Enthalpie	H_{tot}	2'495.08	kW

	tot	
Financial Ohlan		
Einspritzkühler		
Einspritzwasser EW	m^*_{EW}	0.00 kg/h
Temperatur	T_{EW}	20 ℃
Wärmekapazität	cpfl	4.19 kJ/kgK
Enthalpie EW	H_{EW}	0.00 kW

Reingas nach Venti			
Temperatur	Т	100.31	°C
Umgeb Druck	P_0	950.00	mbar
Rel Druck	P_{r}	755	Pa
Abs Druck	P_a	957.55	mbar
Mass strom feucht	m* _f	76'765	kg/h
Mass strom trocken	m* _{tr}	75'985	kg/h
Norm Vol feucht	Q_{Nf}	59'822	Nm3/h
Norm Vol trocken	Q _{Nt}	58'610	Nm3/h tr
Betriebs Vol	Q _B	86'547	m3/h
rel Feuchte	φ	1.51%	
Sät Druck	P _S (T)	1024.07	mbar
Part Druck	p_{W}	15.50	mbar
Wassergehalt	X	10.261	g_{H2O}/kg_{Ltr}
Taupunkt	T_Tau	13.5	℃
Kühlgrenztemp	T_{KG}	34.9	°C
Massenstrom	m _{O2}	17'429.44	kg/h
	m_{N2}	58'131.26	kg/h
	m_{H2O}	779.65	kg/h
	m_{CO2}	422.90	kg/h
	m_{SO2}	0.11	kg/h
	m_{HCI}	1.66	kg/h
Massenanteil	W _{O2}	22.70%	wt
	W_{N2}	75.73%	wt
	W_{H2O}	1.02%	wt
	W _{CO2}	0.55%	wt
	W_{SO2}	0.00%	wt
	\mathbf{w}_{HCI}	0.00%	wt
Molanteil	y _{O2}	20.38%	mol
	y _{N2}	77.64%	mol
	y _{H2O}	1.62%	mol
	y _{CO2}	0.36%	mol
	y _{SO2}	0.00%	mol
	Унсі	0.00%	mol
Dichte	$ ho_{B}$	0.887	kg/m3
Dichte Normzustand	ρ_0	1.283	kg/Nm3
Dichte Norm trocken	$\rho_{0 \; tr}$	1.291	kg/m3
Wärmekapazität		1.0195	
[cp] O2 (10		0.9242	•
[cp] N2 (10 [cp] H2O (1		1.0378	•
[cp] H2O (1 [cp] CO2 (1		1.8705 0.8691	
[cp] SO2 (1	,	0.6382	
[cp] HCl (10		0.4556	U
Spez. Enth	h _{L tr}	128.96	kJ/kg _{L tr}
Enthalpie	H_{tot}	2'722.01	LAM

Berechnung Verdich	tung	
Eintrittsdruck	poα:	892.6 mbar
Druckerhöhung	∆p :	65.0 mbar
Wirkungsgrad	ην:	70 % -
$\mathbf{m}^* = QB^*\rho$		76'765 kg/h
$\mathbf{po\omega} = \mathbf{po}\alpha + \Delta\mathbf{p}$		957.6 mbar
$\mathbf{Rs} = po\alpha/\rho To\alpha$		0.2891 kJ/kgK
cv = cp - Rs		0.7294 kJ/kgK
$\kappa = cp/cv$		1.3963 -
$\mathbf{P} = m^* cpTo\alpha[(po\omega/pow)]$	ροα)^((κ-1)/κ)-1]1/ην
erf. Leistung	Р	226.93 kW
Τοω =Τοα+P/m*cp	Τοω	100.4 ℃

Daingaa naah Wäsek	201	
Reingas nach Wäsch	<u>ier</u>	
Temperatur	T	34.38 ℃
Umgeb Druck	P_0	950.00 mbar
Rel Druck	P_{r}	20.0 Pa
Abs Druck	P_a	950.20 mbar
Mass strom feucht	m* _f	78'856 kg/h
Mass strom trocken	m* _{tr}	75'985 kg/h
Norm Vol feucht	Q_{Nf}	62'422 Nm3/h
Norm Vol trocken	Q _{Nt}	58'610 Nm3/h tr
Betriebs Vol	Q _B	74'942 m3/h
rel Feuchte	φ	100.00%
Sät Druck	$P_S(T)$	54.29 mbar
Part Druck	p_W	54.29 mbar
Wassergehalt	X	37.776 g _{H2O} /kg _{L tr}
Taupunkt	T_Tau	34.4 ℃
Kühlgrenztemp	T_{KG}	34.4 ℃
Massenstrom	m _{O2}	17'429.44 kg/h
	m _{N2}	58'131.26 kg/h
	m _{H2O}	2'870.42 kg/h
	m _{CO2}	422.90 kg/h
	m _{SO2}	0.11 kg/h
	m _{HCI}	1.66 kg/h
Massenanteil	W _{O2}	22.10% wt
	\mathbf{w}_{N2}	73.72% wt
	W_{H2O}	3.64% wt
	W _{CO2}	0.54% wt
	W _{SO2}	0.00% wt
	\mathbf{w}_{HCI}	0.00% wt
Molanteil	y _{O2}	19.53% mol
	y _{N2}	74.41% mol
	y _{H2O}	5.71% mol
	y _{CO2}	0.34% mol
	y _{SO2}	0.00% mol
	Унсі	0.00% mol
Dichte	$ ho_{B}$	1.052 kg/m3
Dichte Normzustand	ρ_0	1.263 kg/Nm3
Dichte Norm trocken	$\rho_{0 \text{ tr}}$	1.291 kg/m3
Wärmekapazität		1.0354 kJ/kgK
[cp] O2 (3	,	0.9136 kJ/kgK
[cp] N2 (3		1.0330 kJ/kgK
	(34°C) = (34°C) =	1.8538 kJ/kgK 0.8409 kJ/kgK
	(34°C) = (34°C) =	0.6209 kJ/kgK
[cp] HCl (0.4538 kJ/kgK
Spez. Enth	h _{L tr}	131.38 kJ/kg _{L tr}
Enthalpie	H_{tot}	2'773.00 kW

Quench		
Verdampfung		2'090.77 kg/h
Abschlämmung		100 kg/h
Temperatur	T_QW	0.00 ℃
Enthalpie QW	H_{QW}	0.00 kW
Ergänzung Quench	m^*_{QW}	2'190.77 kg/h
Temperatur	T_QW	20 ℃
Enthalpie QW	H_{QW}	50.99 kW

balewa

Verbrennungs Rechnung RNV Sonderbertieb

Abluft					
$V_{B^{\star}Abluft}$	110'000	Bm3/h			
$V_N^*_{Abluft}$	95'078	Nm3/h ti	r		
m* _{Abluft}	123'980	kg/h			
m* _{Abluft tr}	123'025	kg/h			
T _{Abluft}	20	°C			
Rel Druck		mmWS			
rel Feuchte		IIIIIIVS			
Dichte Betr p			1 127	kg/m3	
Dichte Norr p	_			kg/Nm3	
Abs Druck	-	mhar	1.200	Ng/141110	
P _S (T)	23.36				
p _W	11.68				
Konzentratio	n Organika			mg/Bm3	
				mg/Nm3 tr	
			2'641	mgC/Nm3 tr	
Zus	[kg/h]		[%vol]	[%wt]	
O2	28'894.30		20.93%	23.31%	
N2	94'035.86		77.79%	75.85%	
H2O	955.63		1.23%	• • • • • • • • • • • • • • • • • • • •	
CO2	94.67		0.05%	0.08%	
Wärmekapa	zität		1.0100	kJ/kgK	
[cp] O2 (20°C			0.9112	•	
[cp] N2 (20 ℃			1.0319		
[cp] H2O (20			1.8503		
[cp] CO2 (20	۳C) =		0.8346	kJ/kgK	

Organika		m* _{Org} =		4	448.6	kg/h
Temperatur		T =			20	°C
Wärmekapazität		cp =			2.00	kJ/kgK
Elementaranalyse	ə:					
MG [k	g/kmol]	1	mi [kg/h]		[%wt]	[%w
С	12.01		251.10	55	.98%	55.989
H	1.01		27.36	6	.10%	6.10
0	16.00		22.38	4	.99%	4.99
N	14.01		0.09	0	.02%	0.029
S	32.06		4.40	0	.98%	0.989
CI	35.45		143.23	31	.93%	31.93
Σ			448.56	100	.00%	100.00
Heizwert						
Hu	22.47					kcal/kg
Но	23.80	MJ/kg		568	4.73	kcal/kg
Luftbedarf o min	1.000	l 00//				
o min I min		kg O2/k				
λ	0.032	-	ĸy			
l		kg Luft/	kg =		6.21	Nm3/kg
Rauchgas						
	g/kmol]					[wt%
N2	28.01		6.168	3 3		68.30
02	32.00		0.000	3 3		0.00
CO2	44.01		2.051	3 3		22.719
H2O SO2	18.02		0.464	0 0		5.14° 0.22°
SO2 HCI	64.06 36.46		0.020 0.328	3 3		3.64
1101	50.40		0.520	ng/ng		0.04

Brennstoff		m* _{LPG} =	0.00	kg/h
Propan		V* _{LPG} =	0.00	l/h
			0.00	m3/d
Dichte		ρο =	810	kg/m3
Temperatur		T =		°C
Wärmekapazität		CD =		kJ/kgK
•• armonapaznar		ор –	1.07	no/ngr
Elementaranalys	e:			
	kg/kmol]	mi [kg/h]	[%wt]	[wt
С	12.01	0.00	82.23%	82.23%
Н	1.01	0.00	17.77%	17.77%
0	16.00	0.00	0.00%	
N	14.01	0.00	0.00%	
S	32.06	0.00	0.00%	0.00%
CI	35.45	0.00	0.00%	
Σ		0.00	100.00%	100.00%
Heizwert				
Hu	45.68	MJ/kg F	10910.98	kcal/kg
Но	49.56	•	11837.13	
Luftbedarf o min	2.601	kg O2/kg		
l min	3.601 15.521	kg U2/kg kg Luft/kg		
λ	1.16	0 0		
l I		kg Luft/kg	13.93	Nm3/kg
		99		Nm3/h
Rauchgas				
	kg/kmol]	[kg/kg]	[Nm3/h]	
N2	28.01	13.831	0	81.7%
O2	32.00	0.577	0	3.0%
CO2	44.01	3.013	0	11.3%
H2O	18.02	1.588	0	4.0%
SO2	64.06	0.000	0	0.0%
				0.0%
HCI m* RG	36.46 28.44	0.000 19.009	0	100.0%

Luftbedarf:								
O2 min				kg O2/h				
O2 Brüden				kg O2/h				
O2 Luft min				kg O2/h				
m* _{Luft min}		-	120'942	kg Luft/h				
V _N * _{Luft min}			-93'550	Nm3/h				
λ			34.571	-				
Frischluft								
T _{Luft}	20.00	℃						
Baro Druck	950.00	mbar						
Rel Druck	1180	mmWS						
rel Feuchte	60.00%							
V _B * _{Luft}	0	Bm3/h						
V_N^* _{Luft}	0	Nm3/h t	tr					
m* _{Luft}	0	kg/h						
m* _{Luft tr}	0	kg/h						
Dichte Betr ρ_B			1.264	kg/m3				
Dichte Norr ρ_0			1.290	kg/Nm3		Abluft + Fris	chluft	
Abs Druck	1065.52	mbar						
P _S (T)	23.36	mbar				T Misch	20	°C
p_W	14.01	mbar						
Zus	[kg/h]		[%vol]	[%w	vt]	[kg/h]	[%wt]	
O2	0.00		20.91%	23.29	%	28'894.30	23.31%	
N2	0.00		77.73%	75.81	%	94'035.86	75.85%	
H2O	0.00		1.32%	0.82	%	955.63	0.77%	
CO2	0.00		0.05%	0.08	%	94.67	0.08%	
						123'980	100%	
Wärmekapazitä	it		1 0104	kJ/kgK			1 0100	kJ/kgK
[cp] O2 (20°C)	=			kJ/kgK				kJ/kgK
[cp] N2 (20 °C)	=			kJ/kgK				kJ/kgK
[cp] H2O (20 °C				kJ/kgK				kJ/kgK
[cp] CO2 (20°C				kJ/kgK				kJ/kgK

Massenbilanz Kontrollle	

INPUT		
Massenstrom Brennstoffe m*B =	448.56	kg/h
Mittl. unterer Heizwert Brennstoffe =	22.47	MJ/kg
Massenstrom Luft + Brüden =	123'980	kg/h
Masse total ein	124'429.02	ka/h

OUTPUT

Rauchgas	124'429.02 kg/h
Masse total aus Differenz	124'429.02 kg/h - kg/h
CO2 Bilanz CO2 in Abluft CO2 aus Verbrennung Organika	94.67 kg/h 920.07 kg/h

CO2 aus Verbrennung Organika 920.07 kg/h
CO2 aus Verbrennung Sttützbrennstoff
CO2 gebildet 920.06 kg/h

NOx Abschätzung

NOx Abschätzung Brenner Spez. NO₂ (EN676) 120 mg/kWh Brennerleistung -0.05 kW NO₂ Brenner 113 mg/Nm3 0.000 kg/h Heissgas Vol der Ox. zone 120 m3 Verweilzeit 1.01 s 5 Eq. const Kp 3'148.3 126 ppmv NO₂ Heissgas 52 mg/Nm3 5.078 kg/h Brennstoff

3 mg/Nm3

55 mg/Nm3

100%

0.295 kg/h

5.373 kg/h

wg/Nm3 Umsetzung N
NO₂Brennstoff
NO₂gesamt

qv1 0 MJ/h
qv2 0 MJ/h 0.00%

0 MJ/h

OUTPUT

Rauchgas:	:									
	[kg/kmol]					[wt%]	[vol%]	[mg/Nm3 tr]		
N2	28.01	94'035.950	kg/h	75'196	Nm3/h	75.57%	77.61%			
O2	32.00	28'058.507	kg/h	19'635	Nm3/h	22.55%	20.27%			
CO2	44.01	1'014.721	kg/h	513	Nm3/h	0.82%	0.53%			
SO2	64.06	8.783	kg/h	3	Nm3/h	0.01%	0.00%	92.03		
HCI	36.46	147.297	kg/h	91	Nm3/h	0.12%	0.09%	1543.40		
H2O	18.02	1'163.759	kg/h	1'447	Nm3/h	0.94%	1.49%			
Mol masse Masse RG			Volumer	n RG			Wasserge	halt / Dicht	e	
28.37	kg/kmol	124'429.02	kg RG/h	96'884	Nm3/h	100.0%	100.0%	X=	9.441	g H ₂ O/kg Luft
		123'265.26	kg RG/h tr	95'437	Nm3/h tr			ρο =	1.284	kg/Nm3

<u>Temperaturen</u>		Rel Druck	Betriebsvolumen RG	Dichte RG			
T _{A ein}	20 °C (Temp Abluft ein)	-33 mmWS	111'284 Bm3/h	1.118	kg/m3		
T_W	779.0 ℃ (Temp nach Vorwärmung)	-40 mmWS	399'857 Bm3/h	0.311	kg/m3	qv1	
T_V	850.0 ℃ (Temp in Verbrennung)	-33 mmWS	426'524 Bm3/h	0.292	kg/m3	qv2	
T_{RG}	99.5 ℃ (Temp RG aus)	-50 mmWS	141'728 Bm3/h	0.878	kg/m3	qv3	
T_U	20 °C (Temp Umgebung)						

Adiabate Verbrennungs-Temperatur $H'(T_{Luft}, T_{Feed}) - H''(T_{ad}) = 0$

T_{ad} = 100 ℃

<u>Wärmekapazitä</u>	it T _w	779 ℃	Wärmekapazität T	L	850 ℃	<u>Wärmekapazitä</u>	T _{RG}	100 ℃	Wärmekapazität T _I	1	20 ℃	<u>Wärmekapazität</u>	T _{ad}	100 ℃
[cp] Luft =	1.0677	kJ/kgK	[cp] Luft =	1.0753	kJ/kgK	[cp] Luft =	1.0060	kJ/kgK	[cp] Luft =	1.0032	kJ/kgK	[cp] Luft =	1.0060	kJ/kgK
[cp] N2 =	1.0933	kJ/kgK	[cp] N2 =	1.0995	kJ/kgK	[cp] N2 =	1.0377	kJ/kgK	[cp] N2 =	1.0319	kJ/kgK	[cp] N2 =	1.0377	kJ/kgK
[cp] O2 =	1.0118	kJ/kgK	[cp] O2 =	1.0190	kJ/kgK	[cp] O2 =	0.9240	kJ/kgK	[cp] O2 =	0.9112	kJ/kgK	[cp] O2 =	0.9240	kJ/kgK
[cp] CO2 =	1.0835	kJ/kgK	[cp] CO2 =	1.0990	kJ/kgK	[cp] CO2 =	0.8688	kJ/kgK	[cp] CO2 =	0.8346	kJ/kgK	[cp] CO2 =	0.8688	kJ/kgK
[cp] H2O =	2.0670	kJ/kgK	[cp] H2O =	2.0893	kJ/kgK	[cp] H2O =	1.8703	kJ/kgK	[cp] H2O =	1.8503	kJ/kgK	[cp] H2O =	1.8703	kJ/kgK
[cp] SO2 =	0.7659	kJ/kgK	[cp] SO2 =	0.7748	kJ/kgK	[cp] SO2 =	0.6380	kJ/kgK	[cp] SO2 =	0.6170	kJ/kgK	[cp] SO2 =	0.6380	kJ/kgK
[cp] HCl =	0.4743	kJ/kgK	[cp] HCl =	0.4762	kJ/kgK	[cp] HCl =	0.4556	kJ/kgK	[cp] HCl =	0.4534	kJ/kgK	[cp] HCl =	0.4556	kJ/kgK
[cp] AL =	1.0818	kJ/kgK	[cp] RG =	1.0898	kJ/kgK	[cp] RG =	1.0178	kJ/kgK	[cp] RG =	1.0100	kJ/kgK	[cp] RG =	1.0178	kJ/kgK

Wärmebilanz:					
Input:	$H'(T_{Luft}, T_{Feed}) = \Sigma\{m^*_{Feed\ i}(Hu_{Feed\ i} + cp_{Feed\ i}T_{Feed\ i})\}$	+ m^*_{Luft} [cp] _{Luft} T_{Luft}	+ m* _{Abluft} [c _l] _{Abluft} T _{Abl}	luft
Feuerungswärmeleistur	ng (FWL)	H' =	12'601	MJ/h	3.500 MW
Abluft ein	$H'_{AL}(T_{A \text{ ein}}) = m^*_{AL} [cp]_{AL} T_{A \text{ ein}} + m^*_{Org} cp T_{A \text{ ein}}$	$H'_{AL}(T_{A \text{ ein}}) =$	2'522	MJ/h	0.701 MW
Abluft vorgewärmt	$H'_{AL}(T_W) = m^*_{AL}[cp]_{AL}T_W + m^*_{Org}cpT_W$	$H'_{AL}(T_W) =$	105'188	MJ/h	29.219 MW
Leistung WT	$Q_{WT} = H'_{AL}(T_W) - H'_{AL}(T_{A \text{ ein}})$	$Q^+_{WT} =$	102'665	MJ/h	28.518 MW
Rauchgas Verbrennung	$H"_{RG}(T_V) = m^*_{RG}[cp]_{RG}T_V$	$H_{RG}(T_V) =$	115'267	MJ/h	32.018 MW
Brennerleistung	$Q_{Brenner} = H''_{RG}(T_V) - H''_{AL}(T_W) - m^*_{org} Hu_{org}$	Q _{Brenner} =	(0)	MJ/h	0.000 MW
Leistung WT	$Q_{WT} = H''_{RG}(T_V) - H''_{RG}(T_{RG})$	$Q_{WT} =$	102'665	MJ/h	28.518 MW
Rauchgas aus	$H"_{RG}(T_{RG}) = m^*_{RG} [cp]_{RG} T_{RG}$	$H''_{RG}(T_{RG}) =$	12'601	MJ/h	3.500 MW

H'1	2'522	$MJ/h = H'_{AL}(T_{A \text{ ein}})$		
H'2	105'188	$MJ/h = H'_{AL}(T_W)$	105'188	MJ/h
H"2	115'267	$MJ/h = H''_{RG}(T_V)$	115'267	MJ/h
H"3	12'601	$MJ/h = H"_{RG}(T_{RG}$	12'601	MJ/h
H"u	2'514	MJ/h		
$Q_{WT} = f(\eta)$			102'665	MJ/h
Q _{Brenner} =	(0)	MJ/h	0.000	MW
Q _{Organika} =	10'258	MJ/h	2.850	MW
$\eta_{WT} =$	91.06%			

erbrennungs Rechnung RNV So	oı Sond	lerber	tiel	C
-----------------------------	----------------	--------	------	---

Verbrennungs Recht			
Reingas am TNV Aus	<u>tritt</u>		
Temperatur	1E+05	99.50	°C
Umgeb Druck	P ₀	950.00	_
Rel Druck	P _r	-5745	
Abs Druck	P _a	892.55	mbar
Mass strom feucht	m* _f	124'429	
Mass strom trocken	m* _{tr}	123'265	· ·
Norm Vol feucht	Q _{Nf}		Nm3/h
Norm Vol trocken	Q _{Nt}		Nm3/h tr
Betriebs Vol	Q _B	149'940	
2011020 101	ω.в	110010	1110/11
rel Feuchte	φ	1.34%	
Sät Druck	P _S (T)	995.09	mbar
Part Druck	p_{W}	13.33	mbar
Wassergehalt	X	9.441	g_{H2O}/kg_{Ltr}
Taupunkt	T_Tau	11.2	$^{\circ}$
Kühlgrenztemp	T_{KG}	24.1	°C
Massenstrom	m_{O2}	28'058.51	kg/h
	m_{N2}	94'035.95	kg/h
	m_{H2O}	1'163.76	kg/h
	m_{CO2}	1'014.72	kg/h
	m_{SO2}	8.78	kg/h
	m_{HCI}	147.30	kg/h
Massenanteil	W _{O2}	22.55%	
	W_{N2}	75.57%	wt
	W_{H2O}	0.94%	wt
	\mathbf{w}_{CO2}	0.82%	wt
	W_{SO2}	0.01%	wt
	\mathbf{w}_{HCI}	0.12%	wt
N.A. 1		00.070/	1
Molanteil	y _{O2}	20.27%	
	y _{N2}	77.61%	-
	y _{H2O}	1.49%	-
	y _{CO2}	0.53%	-
	y _{SO2}	0.00%	-
	Унсі	0.09%	mol
Dichte	0	0 000	ka/m2
	ρ _B		kg/m3
Dichte Normzustand	ρ_0		kg/Nm3
Dichte Norm trocken	$ ho_{0 \text{ tr}}$		kg/m3
Wärmekapazität [cp] O2 (100)°C) =	1.0178 0.9240	kJ/kgK kJ/kgK
[cp] N2 (100	,	1.0377	-
[cp] H2O (1	,	1.8703	kJ/kgK
[cp] CO2 (1		0.8688	kJ/kgK
[cp] SO2 (1	,	0.6380	kJ/kgK
[cp] HCl (10	υ°C) =	0.4556	kJ/kgK
Spez. Enth	h _{L tr}	125.83	kJ/kg _{I tr}
Enthalpie	H _{tot}	4'308.45	02.0
p	101		

oı Sonderbertieb			
Reingas nach Einsprit	zkühler (Quench)	
Temperatur	Т	99.50	°C
Umgeb Druck	P_0	950.00	_
Rel Druck	P _r	-5745	
Abs Druck	Pa	892.55	
Mass strom feucht	m* _f	124'429	
Mass strom trocken	m* _{tr}	123'265	· ·
Norm Vol feucht	Q _{Nf}	96'813	· ·
Norm Vol trocken	Q _{Nf}		Nm3/h tr
	140	149'940	
Betriebs Vol	Q _B	149 940	1113/11
rel Feuchte	φ	1.34%	
Sät Druck	P _S (T)	995.09	mbar
Part Druck	p _W	13.33	mbar
Wassergehalt	X		g _{H2O} /kg _{L tr}
Taupunkt	T _{Tau}	11.2	
· ·		24.1	
Kühlgrenztemp	T_{KG}	24.1	-0
Massenstrom	m _{O2}	28'058.51	ka/h
	m _{N2}	94'035.95	-
	m _{H2O}	1'163.75	· ·
			•
	m _{CO2}	1'014.72	· ·
	m _{SO2}		kg/h
	m _{HCI}	147.30	kg/h
Massenanteil	W _{O2}	22.55%	wt
Masserianten	w _{N2}	75.57%	
		0.94%	-
	W _{H2O}	0.82%	-
	W _{CO2}		
	W _{SO2}	0.01%	-
	W _{HCI}	0.12%	wt
Molanteil	y _{O2}	20.27%	mol
Molanton	y _{N2}	77.61%	-
		1.49%	_
	У H2O	0.53%	
	y co2		_
	y so2	0.00%	
	Унсі	0.09%	mol
Dichte	0-	0 830	kg/m3
Dichte Normzustand	ρ_{B}		kg/Nm3
	ρ_0		ŭ
Dichte Norm trocken	$ ho_{0 \text{ tr}}$		kg/m3
Wärmekapazität [cp] O2 (100	1 •€\ _	1.0178 0.9240	
[cp] N2 (100		1.0377	-
[cp] H2O (1		1.8703	
[cp] CO2 (1	00°C) =	0.8688	
[cp] SO2 (1		0.6380	kJ/kgK
[cp] HCl (10	= (0°0)	0.4556	kJ/kgK
0 5 "	L		1. 1/1
Spez. Enth	h _{L tr}		kJ/kg _{L tr}
Enthalpie	H _{tot}	4'308.44	kW

	tot		
Einspritzkühler			
Einspritzwasser EW	m* _{EW}	-0.01	kg/h
emperatur	T_{EW}	20	℃
Värmekapazität	cp _{fl}	4.19	kJ/kgK
Inthalpie EW	H_{EW}	0.00	kW

Reingas nach Venti			
Temperatur	T	110.10 ℃	
Umgeb Druck	P_0	950.00 mbar	
Rel Druck	P _r	755 Pa	
Abs Druck	Pa	957.55 mbar	
Mass strom feucht	m* _f	124'429 kg/h	
Mass strom trocken	m* _{tr}	123'265 kg/h	
Norm Vol feucht	Q _{Nf}	96'813 Nm3/h	
Norm Vol trocken	Q _{Nt}	94'920 Nm3/h t	tr
Betriebs Vol	Q_B	143'739 m3/h	
rel Feuchte	φ	0.99%	
Sät Druck	P _S (T)	1437.25 mbar	
Part Druck	p_W	14.30 mbar	
Wassergehalt	X	9.441 g _{H2O} /kg _I	L tr
Taupunkt	T_Tau	12.3 ℃	
Kühlgrenztemp	T_{KG}	36.1 ℃	
Massenstrom	m _{O2}	28'058.51 kg/h	
	m _{N2}	94'035.95 kg/h	
	m_{H2O}	1'163.75 kg/h	
	m _{CO2}	1'014.72 kg/h	
	m _{SO2}	8.78 kg/h	
	m _{HCI}	147.30 kg/h	
Massenanteil	W _{O2}	22.55% wt	
	w _{N2}	75.57% wt	
	W _{H2O}	0.94% wt	
	W _{CO2}	0.82% wt	
	W _{SO2}	0.01% wt	
	W _{HCI}	0.12% wt	
Molanteil	y ₀₂	20.27% mol	
	Y _{N2}	77.61% mol	
	У _{Н2О}	1.49% mol	
	y _{CO2}	0.53% mol	
	y _{SO2}	0.00% mol	
	Унсі	0.09% mol	
Dichte	ρ_{B}	0.866 kg/m3	
Dichte Normzustand	ρ_0	1.285 kg/Nm3	
Dichte Norm trocken	ρ _{0 tr}	1.293 kg/m3	
Wärmekapazität	Pour	1.0188 kJ/kgK	
[cp] O2 (11	0°C) =	0.9257 kJ/kgK	
[cp] N2 (11	0°C) =	1.0385 kJ/kgK	
[cp] H2O (1.8730 kJ/kgK	
[cp] CO2 (0.8732 kJ/kgK	
[cp] SO2 ([cp] HCl (1		0.6407 kJ/kgK 0.4559 kJ/kgK	
Spez. Enth	h _{L tr}	136.84 kJ/kg _{L tr}	
Opoz. Limi	· •∟ tr	100.04 No/NgL tr	

Berechnung Verdich	ntung	
Eintrittsdruck	poα:	892.6 mbar
Druckerhöhung	Δp :	65.0 mbar
Wirkungsgrad	ηv :	70% -
$\mathbf{m}^* = QB^*\rho$		124'429 kg/h
$\mathbf{poω} = \mathbf{poα} + \Delta \mathbf{p}$		957.6 mbar
$\textbf{Rs} = po\alpha/\rho To\alpha$		0.2886 kJ/kgK
cv = cp - Rs		0.7292 kJ/kgK
$\kappa = cp/cv$		1.3958 -
$\mathbf{P} = \mathbf{m}^* \operatorname{cpTo\alpha}[(\operatorname{po\omega}$	/poα)^((κ-1)/κ)-1]1/ην
erf. Leistung	P	376.91 kW
Τοω =Τοα+P/m*c _i	Τοω	110.2 ℃

Reingas nach Wäsch	<u>ner</u>		
Temperatur	Т	35.56 ℃	
Umgeb Druck	P_0	950.00 mbar	
Rel Druck	P_r	20.0 Pa	
Abs Druck	P_a	950.20 mbar	
Mass strom feucht	m* _f	128'252 kg/h	
Mass strom trocken	m* _{tr}	123'265 kg/h	
Norm Vol feucht	Q_{Nf}	101'689 Nm3/h	
Norm Vol trocken	Q_{Nt}	94'920 Nm3/h tr	r
Betriebs Vol	Q_B	122'554 m3/h	
rel Feuchte	φ	100.00%	
Sät Druck	P _S (T)	57.96 mbar	
Part Druck	p_W	57.96 mbar	
Wassergehalt	x	$40.459 g_{H2O}/kg_L$	tr
Taupunkt	T_Tau	35.6 ℃	
Kühlgrenztemp	T_{KG}	35.6 ℃	
Massenstrom	m _{O2}	28'058.51 kg/h	
	m_{N2}	94'035.95 kg/h	
	m_{H2O}	4'987.20 kg/h	
	m _{CO2}	1'014.72 kg/h	
	m_{SO2}	8.78 kg/h	
	m _{HCI}	147.30 kg/h	
Massenanteil	W _{O2}	21.88% wt	
	w_{N2}	73.32% wt	
	W _{H2O}	3.89% wt	
	W _{CO2}	0.79% wt	
	W _{SO2}	0.01% wt	
	\mathbf{w}_{HCI}	0.11% wt	
Molanteil	y _{O2}	19.32% mol	
	y _{N2}	73.98% mol	
	y _{H2O}	6.10% mol	
	y co2	0.51% mol	
	y so2	0.00% mol	
	Унсі	0.09% mol	
Dichte	ρ_{B}	1.046 kg/m3	
Dichte Normzustand	ρ_0	1.261 kg/Nm3	
Dichte Norm trocken	$\rho_{0 \text{ tr}}$	1.292 kg/m3	
Wärmekapazität		1.0367 kJ/kgK	
[cp] O2 (3		0.9138 kJ/kgK	
[cp] N2 (1.0330 kJ/kgK	
	(36 °C) = (36 °C) =	1.8541 kJ/kgK 0.8415 kJ/kgK	
	(36°C) = (36°C) =	0.8415 kJ/kgK 0.6212 kJ/kgK	
[cp] HCl (0.4538 kJ/kgK	
Spez. Enth	h _{L tr}	139.50 kJ/kg _{L tr}	
Enthalpie	H _{tot}	4'776.67 kW	

Verdampfung		3'823.45 kg/h
Abschlämmung		100 kg/h
Temperatur	T_{QW}	0.00 ℃
Enthalpie QW	H_{QW}	0.00 kW
Ergänzung Quench	m* _{QW}	3'923.45 kg/h
Temperatur	T_{QW}	20 °C
Enthalpie QW	H_{QW}	91.32 kW