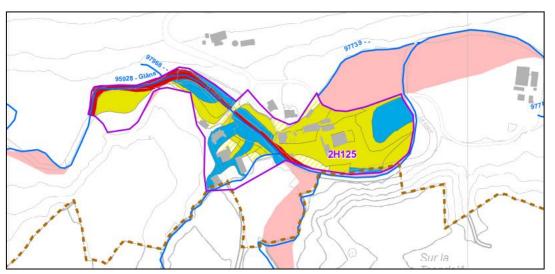


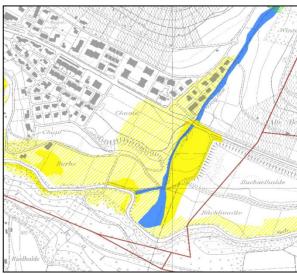
FORUM

L'environnement jurassien en questions

LES MESURES DE PROTECTION DES BÂTIMENTS CONTRE LES CRUES

Mischa Schmid Niederer + Pozzi Umwelt AG Roger Kolb Niederer + Pozzi Umwelt AG


Bastian Schmid Niederer + Pozzi Umwelt AG



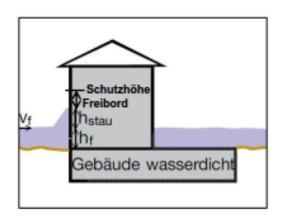
Les mesures de protection des bâtiments contre les dangers naturels

- Niederer + Pozzi Umwelt AG a établi des cartes de danger dans différents cantons suisses:
 - AG, BL, SG, SH, SZ, LU, NW, FR, VS, ZH
- Aux cantons suivants, nous fournissons souvent des préavis de construction:
 - AG, SH, SZ, NW, FR, VS, SG, ZH
- Approche similaire pour tous les cantons

Les mesures de protection des bâtiments contre les dangers naturels: Approche

- La démarche principale est la suivante:
 - Brève description du projet de construction
 - Description de la situation actuelle de danger, avant construction
 - Les cartes de dangers sont à la base de l'analyse
 - Analyse locale supplémentaire, plus approfondie et à l'échelle plus détaillée que celle de la carte de dangers
 - Prise en compte des caractéristiques locales (topographie détaillée, dépôt de matériaux, risque d'embâcles, ruissellement de pluie...)
 - Définition des objectifs de protection:
 - à déterminer pour chaque projet
 - Une estimation grossière est possible sur la base des cartes d'intensité
 - Conception des mesures de protection locale:
 - De nouveau: Prise en compte des caractéristiques locales, y compris l'effet hydraulique de l'implantation du projet de l'architecte.

Les mesures de protection des bâtiments contre les dangers naturels: Approche



- La prise en compte des dangers naturels est un élément constitutif de la demande de permis de construire
- Celle-ci peut exiger de l'expérience en hydraulique:
 - Il faut être en mesure d'analyser et d'établir les différents scénarios d'écoulement plausibles
 - Il faut pouvoir pronostiquer en détail les corridors d'écoulement de l'eau à un niveau très local
 - Des structures topographiques ou constructives de moindre envergure peuvent provoquer des refoulements et des déviations qui remettent en cause le scénario
- Les bureaux spécialisés en hydraulique peuvent vous soutenir pour l'établissement des recommandations pour la protection des bâtiments contre les dangers naturels.

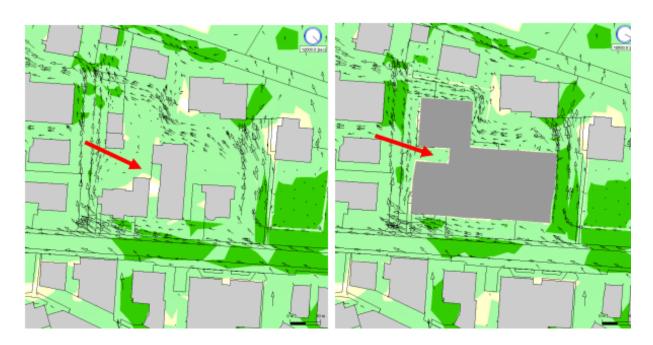
Objectifs/ niveaux de protection

- h_f [m] Hauteur d'inondation
- h_{stau} [m] Hauteur de retenue due à un obstacle
- v_f [m/s] Vitesse d'écoulement
- Revanche [m] distance verticale entre h_{stau} et le niveau de protection

	V _f	h _{stau}
Flaches Gelände (bis 2%)	0-2 m/s	ca. 0-20 cm
Steiles Gelände (5%–10%) Überschwemmhöhe h, mehr als 0,5 m	3–5 m/s	ca. 50–130 cm
Kanalisierte Bereiche wie Strassenzüge		

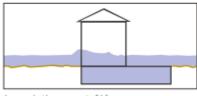
Source: Recommandations - Protection des objets contre les dangers naturels gravitationnels (AEAI, 2005)

Objectifs/ niveaux de protection

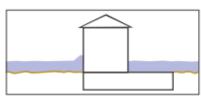

- AG: Q100 niveau d'eau + revanche spécifiquement choisie en fonction de la situation locale
- SZ: Q100 niveau d'énergie (= h_{stau}) = hauteur de retenue
- NW (plaine de Stans): Q300 niveau d'eau + revanche (25 cm au moins)
- Les deux principes suivants sont toujours à respecter:
 - Les mesures de protection ne doivent en aucun cas avoir une incidence négative pour les terrains avoisinants:
 - Des inondations plus fréquentes ou plus intenses sur des parcelles voisines suite à la mise en œuvre des mesures ne sont pas tolérées.
 - La fonctionnalité hydraulique doit être garantie pour toutes les configurations spécifiques du terrain, des ouvrages etc.:
 - Tous les scénarios locaux possibles sont à considérer, y compris l'érosion, les dépôts, les embâcles etc.
 - Si nécessaire, en cas d'incertitudes, ne pas hésiter à augmenter la revanche

Modélisation 2d

- Parfois une modélisation 2d est appropriée pour:
 - L'estimation de l'écoulement sur un terrain très plat et ses conséquences pour les parcelles avoisinantes.
 - La détermination plus détaillée des niveaux d'inondation, afin de pouvoir choisir un niveau de protection optimisé.



Les concepts de protection



 Recommandations - Protection des objets contre les dangers naturels gravitationnels (AEAI, 2005)

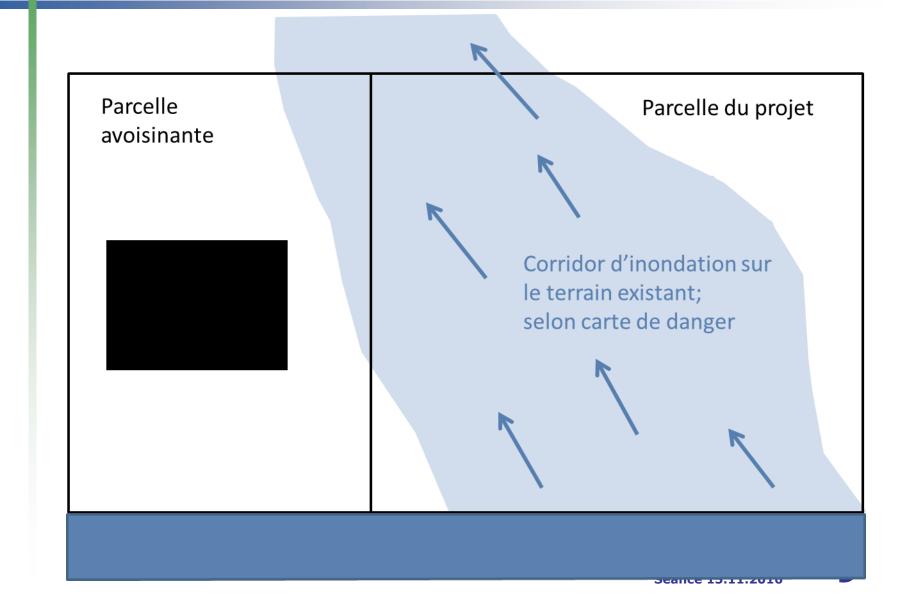
Inondation contrôlée

Inondation contrôlée

2. Etanchement

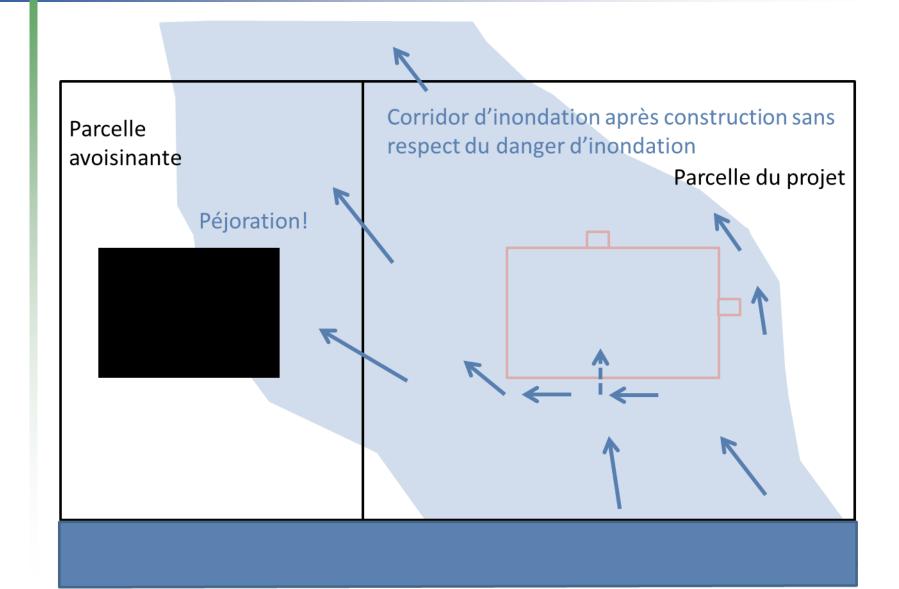
Ecran (endiguement)

 Les mesures de protection doivent répondre à différents critères:

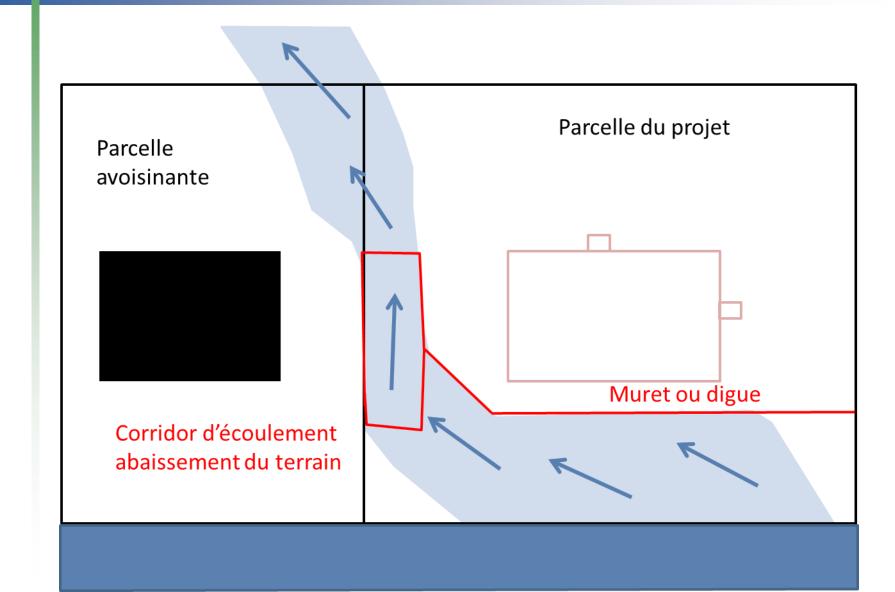

Ecran

- Les mesures ne doivent entraîner aucune conséquence négative ailleurs.
- Comportement robuste en cas de surcharge: ne pas provoquer de nouvelles sources de danger
- En général, les mesures doivent être pérennes et fonctionnelles sans intervention humaine

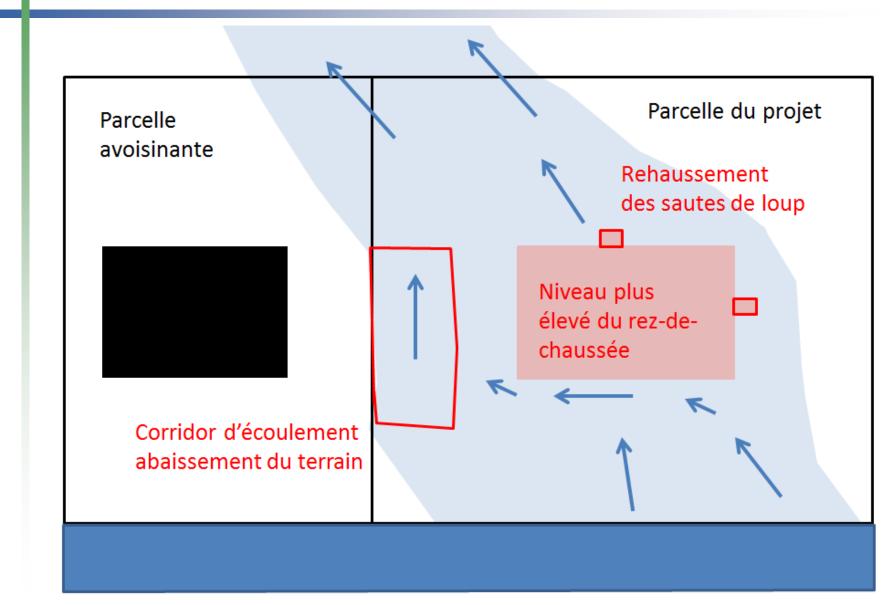
Exemple schématique, situation initiale



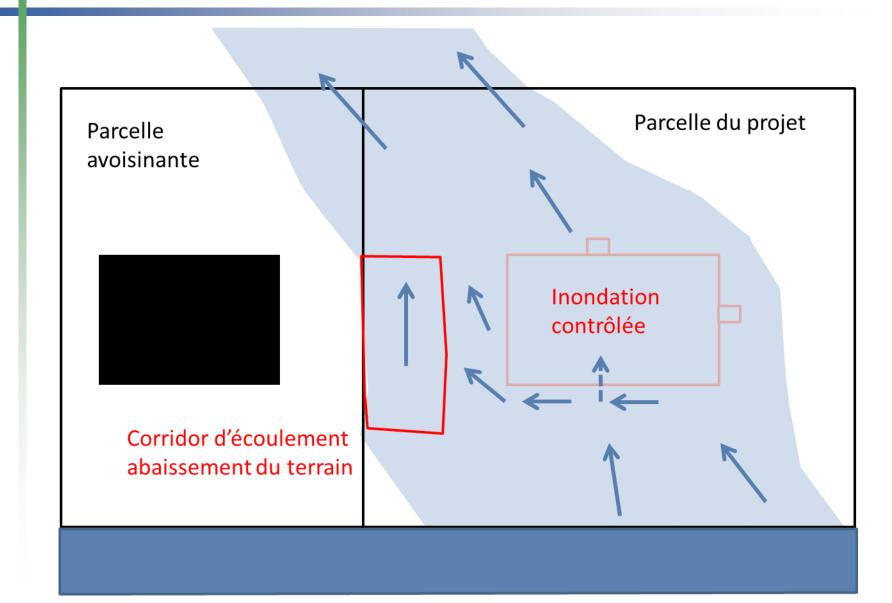
Exemple schématique, projet sans mesures de protection locale



Exemple schématique, Ecran



Exemple schématique, Etanchement



Exemple schématique, Inondation contrôlée

Mesures constructives:

- Murets
- Digues
- Bordures aux:
 - Chemins
 - Trottoirs
 - Routes

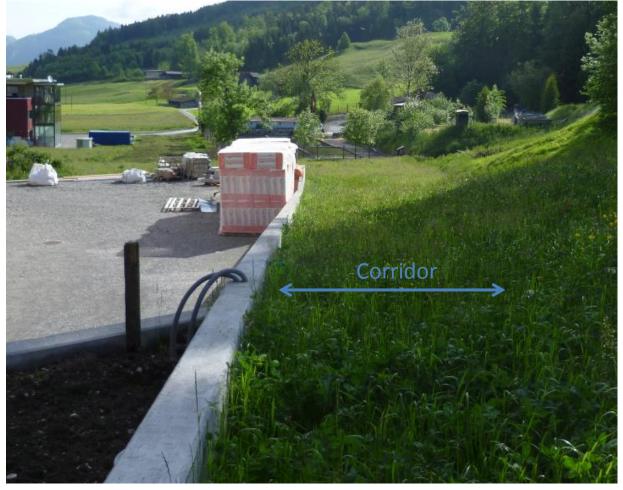
Danger de dépôts de matériaux érodés, entretien/ contrôle nécessaire

- Mesures constructives:
 - Murets
 - Digues
 - Bordures aux:
 - Chemins
 - Trottoirs
 - Routes
 - Égouts et avaloirs

Avaloir avec grille à l'espacement fin, danger d'embâcle par objets flottants (bois, foin, mottes d'herbe, feuilles etc.),

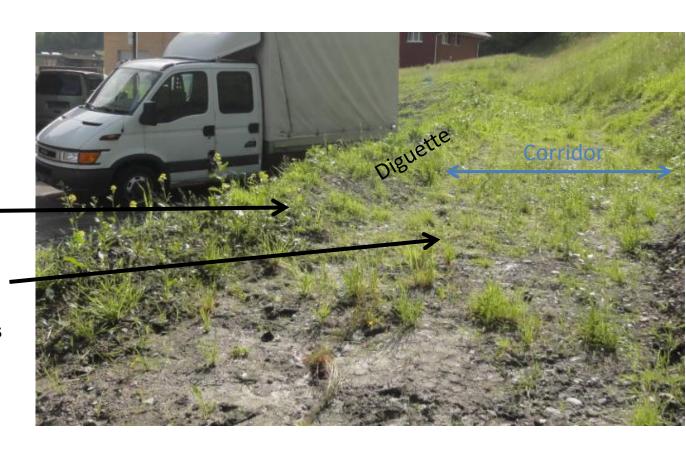
- Mesures constructives:
 - Rigoles drainantes
 - Conduites drainantes
 - Égouts et avaloirs

Danger d'embâcle par objets flottants (bois, foin, mottes d'herbes, feuilles etc.), entretien/ contrôle nécessaire


Danger de dépôts de matériaux érodés

Corridor d'écoulement

Les mesures de protection des bâtiments contre les dangers naturels Séance 15.11.2016



Corridor d'écoulement

Danger éventuel d'érosion de la diguette

Danger éventuel de dépôts de matériaux érodés

- Rehaussement du terrain
- Niveau élevé du rez-de-chaussée

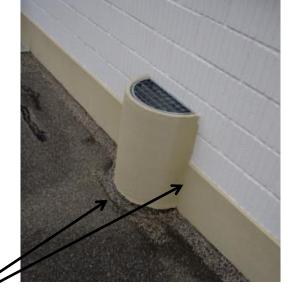
- Seuil minimum pour garages souterrains
 - Mesure permanente
 - En général, bien faisable jusqu'à une hauteur de 10-20 cm
 - Hauteur plus importante: problématique pour l'accessibilité des voitures

- Cloison étanche rabattable (batardeaux) pour garages souterrains
 - Mesure mobile
 - Risque d'intervention tardive (Arrivée très rapide d'une crue d'orages, évènement dans la nuit ou pendant les vacances etc.)
 - Stockage séparé de l'élément mobile (ne pourrait pas être disponible et prêt en cas d'urgence)

(Source: jomos.ch)

- Porte étanche fixe
 - Idem, mais:
 - Élément toujours disponible, attaché à l'endroit de l'intervention
 - Fiabilité plus élevée si la porte reste toujours fermée, ouverture seulement en cas de nécessité

(source: Nidwaldnertor)


Etanchement de la façade

- Rehaussement des sautes-de-loup
- Façade aux matériaux peu sensibles à l'humidité
 - Par exemple: socle de hauteur suffisante avec isolation en polystyrène au lieu de laine de verre
- Attention aux perforations cachées dans les murs ou dans les fondations:

 Conduites d'eau et d'électricité, remous dans la canalisation, ouvertures pour la ventilation etc.)

Étanchéité des fondations et des joints!

Image: Aargauische Gebäudeversicherung

Etanchement

Fenêtre étanche

Image: fenêtre de protection contre les crues en verre acrylique (sans fermeture automatique) (source: Neo Vac S.A.)

Image: fenêtre de protection contre les crues en verre acrylique (fermeture automatique avec flotteur) (source: Neo Vac S.A.)

Etanchement

- Porte étanche
 - Aussi pour les garages

Image: porte de protection contre les crues (source: Buchele GmbH)

Image: porte de protection contre les crues (source: Buchele GmbH)

Inondation contrôlée

- Stratégie envisageable si les mesures de protection locale étaient démesurées:
 - L'inondation d'une partie du bâtiment est tolérée, si elle ne provoque pas de dégâts à l'intérieur du bâtiment
 - Choix approprié des matériaux de construction, peu sensibles à l'humidité
 - Matériaux d'isolation, revêtement des planchers etc.
 - Après la crue: seulement travaux de nettoyage

Inondation contrôlée

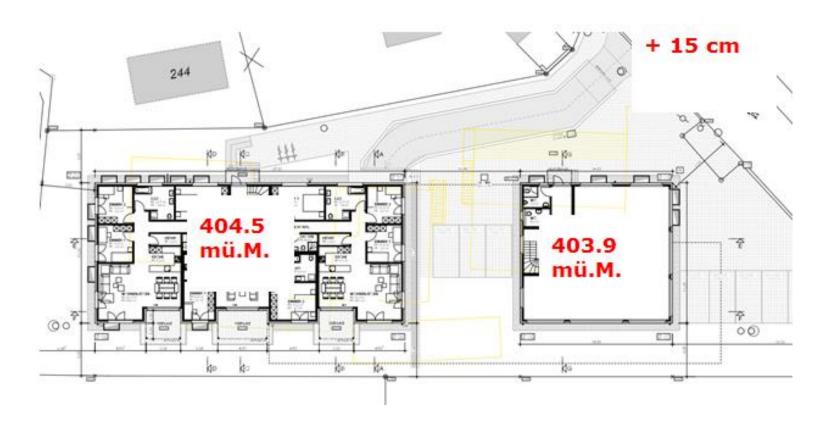
 Emplacement des installations techniques du bâtiment audessus du niveau de protection

Aucun stockage de mobilier, de voitures ou d'objets de

valeur à l'étage inondable

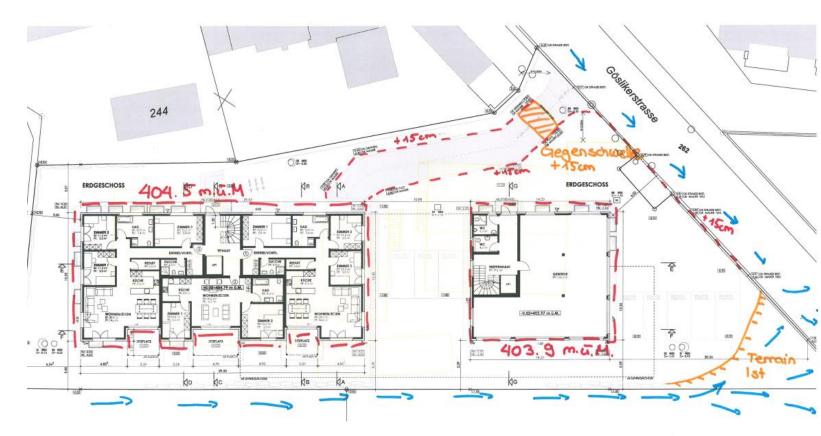
Les mesures de protection des bâtiments contre les dangers naturels Séance 15.11.2016

Exemple 1: Danger actuel et implantation du projet



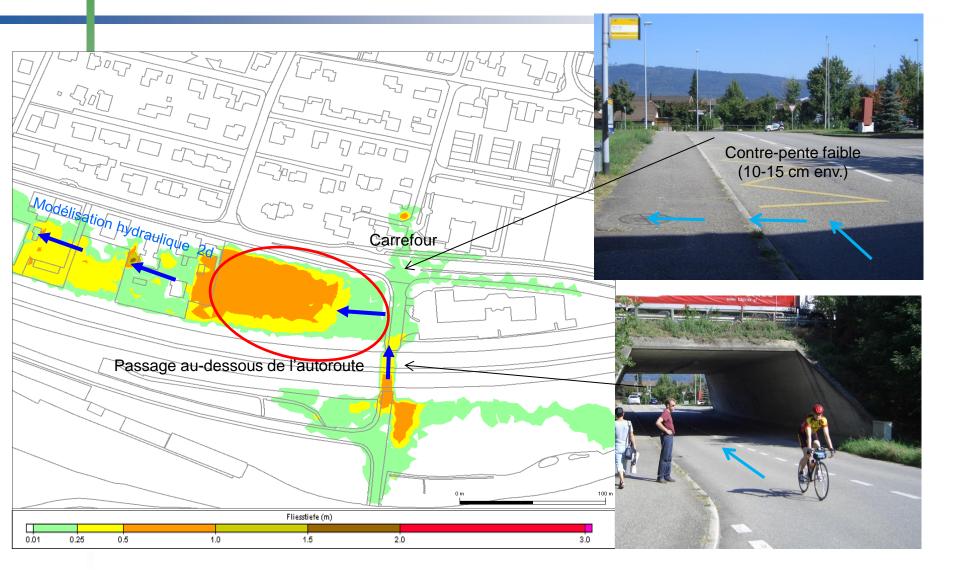
Exemple 1: Niveaux de protection

• Objectif de protection: Q100 niveau d'eau + revanche

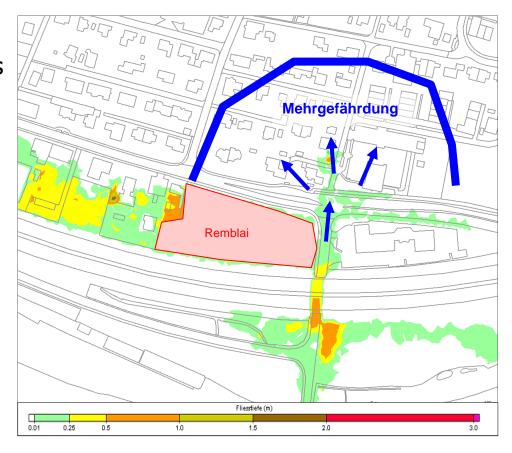


Exemple 1: Concept pour les mesures de protection locale

Ecran:

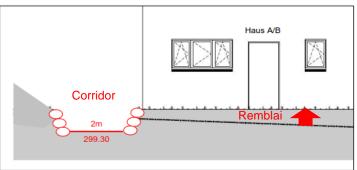

- Seuil minimum
- Surélévation des bâtiments
- Murets

Exemple 2: Situation de danger et implantation du projet



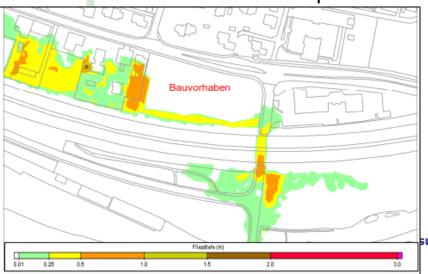
Exemple 2: Evaluation de la stratégie

- Objectif de protection:
 Q100 niveau d'eau
 +revanche
- Un remblai suffirait, mais provoquerait une déviation de l'inondation vers le nord
- → Incidence négative intolérable pour le quartier avoisinant



Exemple 2: Concept choisi

- Ecran/ Etanchement en combinaison avec un corridor d'écoulement contrôlé:
 - Remblai pour les bâtiments (en vert)
 - Abaissement de la bordure du trottoir (en bleu foncé)
 - Corridor d'écoulement au pied du tracé de l'autoroute (en bleu gris)

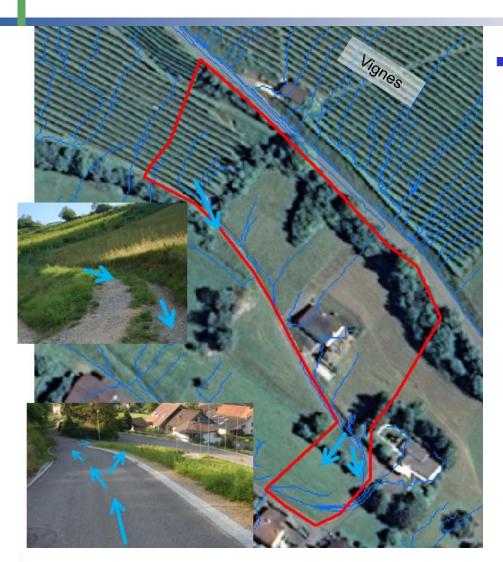


Exemple 2: Vérification

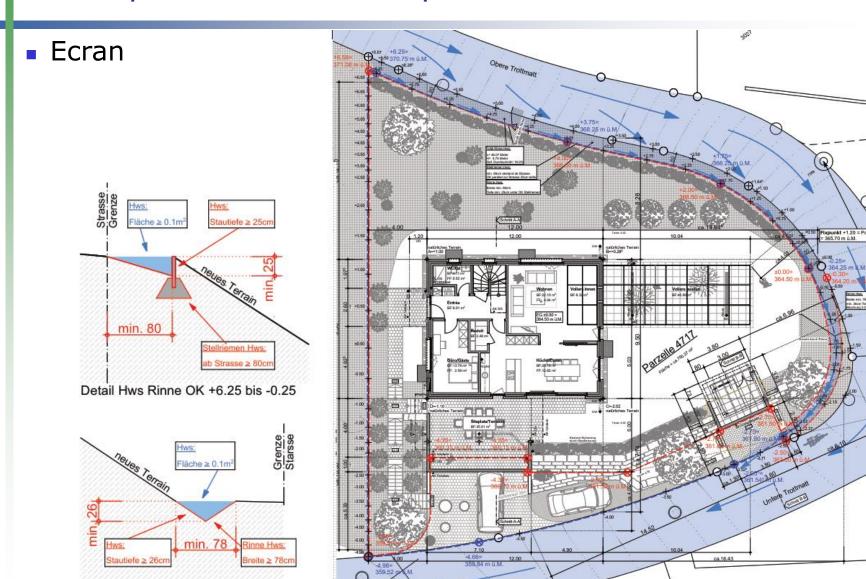
- Vérification hydraulique au moyen d'un modèle hydraulique en 2d
 - \rightarrow ok!
- Vérification des mesures de protection intégrées par l'architecte dans ses plans (élément constituant du dossier de permis de construire)
 - → ok!
- Vérification de la mise en œuvre:
 - ??? (En général, nous n'avons pas de mandat pour la vérification de la mise en œuvre: problématique!)
 - Pour cet exemple: visite locale par hasard, à l'occasion d'un autre projet

Exemple 2: Mise en œuvre

- Mise en œuvre correcte, mais: encombrement du corridor par une haie transversale et par deux cabanes de jardin
 - Avertissement à la personne responsable de la commune, avec les propositions de:
 - Déplacer les cabanes au bord du corridor
 - Remplacer la haie par un paravent anti-regard avec des ouvertures en bas (h= 50 cm)



Exemple 3: Danger par ruissellement de pluie


Niveau de protection: Q100 niveau d'eau + revanche = 20 cm

Exemple 3: Concept de mesures de protection locale

Detail Hws Rinne OK -0.25 bis -2.70

Conclusions / expériences NIPO

- Des mesures fiables, économiques et mesurées existent pour la protection locale contre les crues!
 - En général peu coûteuses, si on peut les intégrer dès le début de la conception du projet
 - Des modifications simples du projet permettent de réduire les dommages d'inondation
- Un appui par un spécialiste en hydraulique est recommandé pour:
 - Un préavis d'expert rapide et économique sur la situation du danger actuel et sur les concepts possibles de protection locale (coûts pour un projet standard: Fr. 700-2'500 environ)
 - L'évaluation des variantes de la protection locale en collaboration avec l'architecte
 - Le dimensionnement des mesures /éléments de protection hydrauliques
 - La vérification de la prise en compte des mesures dans les plans de l'architecte
 - Pour les situations plus complexes: modélisation hydraulique en 2d
- Sensibilité encore insuffisante de la part des maîtres d'ouvrage et des architectes:
 - Souvent, nous sommes contactés très tard, à la veille de l'envoi du dossier de permis de construire!
 - Une modification du projet et une intégration des mesures en phase finale du projet est plus compliquée et donc plus coûteuse.
 - Risque de retard pour le projet et risque de refus du permis de construire.
- Sans une mise en œuvre adéquate (y compris l'entretien), l'efficacité des mesures n'est pas garantie:
 - En général, nous n'avons pas de mandat pour la vérification de la mise en œuvre!